Home
Class 12
MATHS
If f(x) is an integrable function over e...

If f(x) is an integrable function over every interval on the real line such that f(t+x)=f(x) for every x and real t, then
` int_(a)^(a+t) f(x)dx` is equal to

A

`overset(a)underset(0)int f(x)dx`

B

`overset(t)underset(0)int f(x)dx`

C

`overset(t)underset(a)int f(x)dx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{a}^{a+t} f(x) \, dx \) given the property \( f(t+x) = f(x) \) for every \( x \) and real \( t \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{a}^{a+t} f(x) \, dx \). 2. **Split the Integral**: We can split the integral into two parts: \[ I = \int_{a}^{0} f(x) \, dx + \int_{0}^{t} f(x) \, dx + \int_{t}^{a+t} f(x) \, dx \] 3. **Change of Variable**: For the integral \( \int_{t}^{a+t} f(x) \, dx \), we will perform a change of variable. Let \( x = y + t \), then \( dx = dy \). - When \( x = t \), \( y = 0 \). - When \( x = a+t \), \( y = a \). Thus, we have: \[ \int_{t}^{a+t} f(x) \, dx = \int_{0}^{a} f(y+t) \, dy \] 4. **Use the Given Property**: From the property \( f(t+x) = f(x) \), we can replace \( f(y+t) \) with \( f(y) \): \[ \int_{0}^{a} f(y+t) \, dy = \int_{0}^{a} f(y) \, dy \] 5. **Combine the Integrals**: Now substituting back into our expression for \( I \): \[ I = \int_{a}^{0} f(x) \, dx + \int_{0}^{t} f(x) \, dx + \int_{0}^{a} f(x) \, dx \] 6. **Reversing the Limits**: The integral \( \int_{a}^{0} f(x) \, dx \) can be rewritten by reversing the limits: \[ \int_{a}^{0} f(x) \, dx = -\int_{0}^{a} f(x) \, dx \] 7. **Final Expression**: Substituting this back into our expression for \( I \): \[ I = -\int_{0}^{a} f(x) \, dx + \int_{0}^{t} f(x) \, dx + \int_{0}^{a} f(x) \, dx \] The \( -\int_{0}^{a} f(x) \, dx \) and \( +\int_{0}^{a} f(x) \, dx \) cancel each other out: \[ I = \int_{0}^{t} f(x) \, dx \] ### Conclusion: Thus, the value of the integral \( \int_{a}^{a+t} f(x) \, dx \) is: \[ \int_{0}^{t} f(x) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Given a function f(x) such that It is integrable over every interval on the real line, and f(t+x)=f(x), for every x and a real tdot Then show that the integral int_a^(a+t)f(x)dx is independent of adot

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(-x)+f(x)=0 then int_a^x f(t) dt is

Let f(x) is a quadratic expression with positive integral coefficients such that for every alpha, beta in R, beta lt alpha,int_alpha^beta f(x) dx lt 0 . Let g(t) = f''(t) f(t), and g(0) = 12 , then

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If f(x) is differentiable function in the interval (0,oo) such that f(1) = 1 and lim_(trarrx) (t^(2)f(x)-x^(2)(t))/(t-x)=1 for each x gt 0 , then f((3)/(2)) is equal tv

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  2. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  3. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  4. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  5. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  6. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  7. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  8. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  9. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  10. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  11. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  12. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  13. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  14. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  15. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  16. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  17. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  18. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  19. Let d/(dx)F(x)=((e^(sinx))/x),x &gt; 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  20. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |