Home
Class 12
MATHS
If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I...

If `I_(1)=int_(3pi)^(0) f(cos^(2)x)dx` and `I_(2)=int_(pi)^(0) f(cos^(2)x)` then

A

`I_(1)=I_(2)`

B

`I_(1)=2I_(2)`

C

`I_(1)=5I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \). ### Step 1: Define the integrals We have: \[ I_1 = \int_{0}^{3\pi} f(\cos^2 x) \, dx \] \[ I_2 = \int_{0}^{\pi} f(\cos^2 x) \, dx \] ### Step 2: Break down \( I_1 \) We can break down \( I_1 \) into three intervals: \[ I_1 = \int_{0}^{\pi} f(\cos^2 x) \, dx + \int_{\pi}^{2\pi} f(\cos^2 x) \, dx + \int_{2\pi}^{3\pi} f(\cos^2 x) \, dx \] ### Step 3: Evaluate \( \int_{\pi}^{2\pi} f(\cos^2 x) \, dx \) Using the substitution \( x = \pi + t \) where \( t \) goes from \( 0 \) to \( \pi \): \[ \int_{\pi}^{2\pi} f(\cos^2 x) \, dx = \int_{0}^{\pi} f(\cos^2(\pi + t)) \, dt \] Since \( \cos(\pi + t) = -\cos t \), we have \( \cos^2(\pi + t) = \cos^2 t \): \[ \int_{\pi}^{2\pi} f(\cos^2 x) \, dx = \int_{0}^{\pi} f(\cos^2 t) \, dt = I_2 \] ### Step 4: Evaluate \( \int_{2\pi}^{3\pi} f(\cos^2 x) \, dx \) Using the substitution \( x = 2\pi + t \) where \( t \) goes from \( 0 \) to \( \pi \): \[ \int_{2\pi}^{3\pi} f(\cos^2 x) \, dx = \int_{0}^{\pi} f(\cos^2(2\pi + t)) \, dt \] Since \( \cos(2\pi + t) = \cos t \), we have \( \cos^2(2\pi + t) = \cos^2 t \): \[ \int_{2\pi}^{3\pi} f(\cos^2 x) \, dx = \int_{0}^{\pi} f(\cos^2 t) \, dt = I_2 \] ### Step 5: Combine the results Now we can combine the results: \[ I_1 = I_2 + I_2 + I_2 = 3 I_2 \] ### Conclusion Thus, we have established that: \[ I_1 = 3 I_2 \] ### Final Answer The relationship between the integrals is: \[ I_1 = 3 I_2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos^(2) x dx

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

(i) int_(0)^( pi)x cos^(2)xdx

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

I=int_(0)^( pi/2)x^(2)cos^(2)x*dx

int_(0)^( pi)(dx)/(1+cos^(2)x)

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If I=int_0^(3pi) f(cos^2x)dx and J=int_0^pi f(cos^2x)dx , then (A) I=5J (B) I=J (C) I=3J (D) none of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  2. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  3. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  4. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  5. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  6. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  7. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  8. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  9. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  10. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  11. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  12. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  13. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  14. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  15. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  16. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  17. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  18. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  19. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  20. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |