Home
Class 12
MATHS
If f(x) is a quadratic polynomial in x s...

If f(x) is a quadratic polynomial in x such that
`6int_0^1 f(x)dx-{f(0)+4f((1)/(2))}=kf(1)`, then k=`

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the given information and derive the required value of \( k \). ### Step 1: Define the quadratic polynomial Let \( f(x) = ax^2 + bx + c \), where \( a \), \( b \), and \( c \) are constants. ### Step 2: Calculate \( f(0) \), \( f\left(\frac{1}{2}\right) \), and \( f(1) \) - \( f(0) = c \) - \( f\left(\frac{1}{2}\right) = a\left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) + c = \frac{a}{4} + \frac{b}{2} + c \) - \( f(1) = a(1)^2 + b(1) + c = a + b + c \) ### Step 3: Set up the integral We need to calculate the integral \( \int_0^1 f(x) \, dx \): \[ \int_0^1 f(x) \, dx = \int_0^1 (ax^2 + bx + c) \, dx \] Using the power rule for integration, we have: \[ \int_0^1 ax^2 \, dx = \left[ \frac{a}{3} x^3 \right]_0^1 = \frac{a}{3} \] \[ \int_0^1 bx \, dx = \left[ \frac{b}{2} x^2 \right]_0^1 = \frac{b}{2} \] \[ \int_0^1 c \, dx = [cx]_0^1 = c \] Thus, \[ \int_0^1 f(x) \, dx = \frac{a}{3} + \frac{b}{2} + c \] ### Step 4: Substitute into the given equation The equation given in the problem is: \[ 6 \int_0^1 f(x) \, dx - (f(0) + 4f\left(\frac{1}{2}\right)) = k f(1) \] Substituting the values we calculated: \[ 6\left(\frac{a}{3} + \frac{b}{2} + c\right) - \left(c + 4\left(\frac{a}{4} + \frac{b}{2} + c\right)\right) = k(a + b + c) \] This simplifies to: \[ 6\left(\frac{a}{3} + \frac{b}{2} + c\right) - \left(c + a + 2b + 4c\right) = k(a + b + c) \] ### Step 5: Simplify the left-hand side Calculating the left-hand side: \[ 6\left(\frac{a}{3}\right) + 6\left(\frac{b}{2}\right) + 6c - (c + a + 2b + 4c) \] This becomes: \[ 2a + 3b + 6c - (5c + a + 2b) = 2a + 3b + 6c - 5c - a - 2b \] Combining like terms: \[ (2a - a) + (3b - 2b) + (6c - 5c) = a + b + c \] ### Step 6: Set the equation equal to the right-hand side Now we have: \[ a + b + c = k(a + b + c) \] Assuming \( a + b + c \neq 0 \), we can divide both sides by \( a + b + c \): \[ 1 = k \] Thus, we find that: \[ k = 1 \] ### Final Answer The value of \( k \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If (x) is of the form f(x)=a+b x+c x^2, show that int_0^1f(x)dx=1/6{f(0)+4f(1/2)+f(1)}

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Evaluate: intf(x)/(x^3-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3

Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, ifint(f(x))/(x^(2)(1+x)^(2))dx is a rational function then the value of f(10)

If int(f(x))/(x^(3)-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3 and int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C . Then (2m+n) is

If f(x)=a x^2+b x+c is a quadratic function such that f(1)=8,f(2)=11 and f(-3)=6 find f(x) by using determinants. Also, find f(0)dot

Let f(x) is a three degree polynomial for which f ' (–1) = 0, f '' (1) = 0, f(–1) = 10, f(1) = 6 then local minima of f(x) exist at

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.

Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x+1)^3)dx is a rational function, then the value of f'(0) is

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  2. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  3. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  4. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  5. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  6. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  7. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  8. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  9. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  10. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  11. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  12. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  13. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  14. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  15. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  16. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  17. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  18. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  20. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |