Home
Class 12
MATHS
The value of integral int(-2)^(4) x[x]dx...

The value of integral `int_(-2)^(4) x[x]dx` is

A

`41//2`

B

20

C

`21//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{4} x \lfloor x \rfloor \, dx \), we will break it down into intervals where the greatest integer function \( \lfloor x \rfloor \) is constant. The intervals we will consider are: 1. From \(-2\) to \(-1\) 2. From \(-1\) to \(0\) 3. From \(0\) to \(1\) 4. From \(1\) to \(2\) 5. From \(2\) to \(3\) 6. From \(3\) to \(4\) ### Step 1: Break down the integral We can express the integral as a sum of integrals over these intervals: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = \int_{-2}^{-1} x \lfloor x \rfloor \, dx + \int_{-1}^{0} x \lfloor x \rfloor \, dx + \int_{0}^{1} x \lfloor x \rfloor \, dx + \int_{1}^{2} x \lfloor x \rfloor \, dx + \int_{2}^{3} x \lfloor x \rfloor \, dx + \int_{3}^{4} x \lfloor x \rfloor \, dx \] ### Step 2: Evaluate each integral **Interval 1: \([-2, -1]\)** In this interval, \( \lfloor x \rfloor = -2 \): \[ \int_{-2}^{-1} x \lfloor x \rfloor \, dx = \int_{-2}^{-1} x (-2) \, dx = -2 \int_{-2}^{-1} x \, dx \] Calculating the integral: \[ \int x \, dx = \frac{x^2}{2} \quad \text{from } -2 \text{ to } -1 \] \[ = \left[-2^2/2\right] - \left[-1^2/2\right] = \left[-2\right] - \left[-0.5\right] = -2 + 0.5 = -1.5 \] Thus, \[ \int_{-2}^{-1} x \lfloor x \rfloor \, dx = -2 \times (-1.5) = 3 \] **Interval 2: \([-1, 0]\)** In this interval, \( \lfloor x \rfloor = -1 \): \[ \int_{-1}^{0} x \lfloor x \rfloor \, dx = \int_{-1}^{0} x (-1) \, dx = -\int_{-1}^{0} x \, dx \] Calculating: \[ = -\left[0 - \left(-\frac{1}{2}\right)\right] = -\left[0 + 0.5\right] = -0.5 \] **Interval 3: \([0, 1]\)** In this interval, \( \lfloor x \rfloor = 0 \): \[ \int_{0}^{1} x \lfloor x \rfloor \, dx = \int_{0}^{1} x (0) \, dx = 0 \] **Interval 4: \([1, 2]\)** In this interval, \( \lfloor x \rfloor = 1 \): \[ \int_{1}^{2} x \lfloor x \rfloor \, dx = \int_{1}^{2} x (1) \, dx = \int_{1}^{2} x \, dx \] Calculating: \[ = \left[\frac{x^2}{2}\right]_{1}^{2} = \left[\frac{4}{2}\right] - \left[\frac{1}{2}\right] = 2 - 0.5 = 1.5 \] **Interval 5: \([2, 3]\)** In this interval, \( \lfloor x \rfloor = 2 \): \[ \int_{2}^{3} x \lfloor x \rfloor \, dx = \int_{2}^{3} x (2) \, dx = 2 \int_{2}^{3} x \, dx \] Calculating: \[ = 2 \left[\frac{x^2}{2}\right]_{2}^{3} = 2 \left[ \frac{9}{2} - \frac{4}{2} \right] = 2 \left[ \frac{5}{2} \right] = 5 \] **Interval 6: \([3, 4]\)** In this interval, \( \lfloor x \rfloor = 3 \): \[ \int_{3}^{4} x \lfloor x \rfloor \, dx = \int_{3}^{4} x (3) \, dx = 3 \int_{3}^{4} x \, dx \] Calculating: \[ = 3 \left[\frac{x^2}{2}\right]_{3}^{4} = 3 \left[ \frac{16}{2} - \frac{9}{2} \right] = 3 \left[ \frac{7}{2} \right] = \frac{21}{2} \] ### Step 3: Combine all results Now, we can sum all the results from each interval: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = 3 - 0.5 + 0 + 1.5 + 5 + \frac{21}{2} \] Calculating: \[ = 3 - 0.5 + 1.5 + 5 + 10.5 = 3 + 0 + 5 + 10.5 = 18 \] ### Final Result The value of the integral \( \int_{-2}^{4} x \lfloor x \rfloor \, dx \) is: \[ \frac{41}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of integral int_(2)^(4)(dx)/(x) is :-

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

Let f(x)=min{|x+2|,|x|,|x-2|} then the value of the integral int_-2^2 f(x)dx is

The value of integral int_(a)^(b)(|x|)/(x)dx , a lt b is :

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of the integral int_(-2)^2|1-x^2|dx is a. 4 b. 2 c. -2 d. 0

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

If the value of the integral int_1^2e^(x^2)dx is alpha , then the value of int_e^(e^4)sqrt(lnx)dx is:

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  2. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  3. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  4. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  5. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  6. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  7. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  8. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  9. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  10. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  11. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  12. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  13. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  14. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  15. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  16. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  17. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  19. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  20. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |