Home
Class 12
MATHS
If h(a)=h(b), the value of the integral ...

If h(a)=h(b), the value of the integral
`int_a^b [f(g(h(x))]^(-1)f'(g(h(x)))g'(h(x))h'(x)dx`is equal to

A

0

B

f(a)-f(b)

C

f(g(a))-f(g(b))

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_a^b \left[ f(g(h(x))) \right]^{-1} f'(g(h(x))) g'(h(x)) h'(x) \, dx \] given that \( h(a) = h(b) \), we can follow these steps: ### Step 1: Substitution Let \( t = f(g(h(x))) \). Then we need to find \( dt \). **Hint:** Use the chain rule for differentiation. ### Step 2: Differentiate \( t \) Using the chain rule, we have: \[ dt = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x) \, dx \] Rearranging gives us: \[ dx = \frac{dt}{f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)} \] **Hint:** Remember that \( dx \) can be expressed in terms of \( dt \). ### Step 3: Substitute in the Integral Now substitute \( t \) and \( dx \) into the integral: \[ I = \int_{h(a)}^{h(b)} \frac{1}{t} dt \] **Hint:** Change the limits of integration according to the substitution. ### Step 4: Evaluate the Integral The integral of \( \frac{1}{t} \) is: \[ I = \left[ \log |t| \right]_{h(a)}^{h(b)} \] **Hint:** Remember to apply the limits correctly. ### Step 5: Substitute Back Now substitute back \( t = f(g(h(x))) \): \[ I = \log(f(g(h(b)))) - \log(f(g(h(a)))) \] **Hint:** Use properties of logarithms to simplify. ### Step 6: Apply the Given Condition Since \( h(a) = h(b) \), we have: \[ I = \log(f(g(h(a)))) - \log(f(g(h(a)))) \] This simplifies to: \[ I = \log(f(g(h(a)))) - \log(f(g(h(a)))) = 0 \] **Hint:** The logarithm of a number minus itself is always zero. ### Final Result Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

If f(x) be a function such that f(-x)= -f(x),g(x) be a function such that g(-x)= -g(x) and h(x) be a function such that h(-x)=h(x) , then choose the correct statement: I. h(f(g(-x)))=-h(f(g(x))) II. f(g(h(-x)))=f(g(h(x))) III. g(f(-x))=g(f(x))

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to

If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(x),g'(x),h'(x)), (f''(x),g''(x),h''(x)), (f'''(x),g'''(x),h'''(x))| is a polynomial of degree (where f^n (x) represents nth derivative of f(x))

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration). Let h(x)=f(x)+g(x). If h(1)=0 then h(e) is equal to :

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) If h (x) = (f (x))/(g (x)) then h'(alpha) equals to:

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  2. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  3. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  4. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  5. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  6. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  7. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  8. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  9. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  10. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  11. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  12. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  13. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  14. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  15. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  16. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  18. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  19. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  20. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |