Home
Class 12
MATHS
int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))d...

`int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx` is equal to

A

`(pi+4)/(4)`

B

`(pi-4)/(4)`

C

`(api)/(4)`

D

`(a+pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1 + a^x} \, dx \), we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1 + a^x} \, dx \). ### Step 2: Apply the property of definite integrals Using the property mentioned, we can rewrite the integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2(-x)}{1 + a^{-x}} \, dx \] ### Step 3: Simplify \( \tan^2(-x) \) Since \( \tan(-x) = -\tan(x) \), we have: \[ \tan^2(-x) = \tan^2(x) \] Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1 + \frac{1}{a^x}} \, dx \] ### Step 4: Simplify the denominator The term \( 1 + \frac{1}{a^x} \) can be rewritten as: \[ 1 + \frac{1}{a^x} = \frac{a^x + 1}{a^x} \] So, the integral becomes: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x \cdot a^x}{a^x + 1} \, dx \] ### Step 5: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1 + a^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x \cdot a^x}{a^x + 1} \, dx \) Adding these two equations: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{\tan^2 x}{1 + a^x} + \frac{\tan^2 x \cdot a^x}{a^x + 1} \right) dx \] ### Step 6: Factor out \( \tan^2 x \) Factoring out \( \tan^2 x \) gives: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \left( \frac{1 + a^x}{1 + a^x} \right) dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \] ### Step 7: Evaluate the integral The integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \) can be evaluated using the identity: \[ \tan^2 x = \sec^2 x - 1 \] Thus: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sec^2 x - 1) \, dx \] Calculating this gives: \[ = \left[ \tan x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} - \left[ x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \left( 1 - (-1) \right) - \left( \frac{\pi}{4} - (-\frac{\pi}{4}) \right) = 2 - \frac{\pi}{2} \] ### Step 8: Solve for \( I \) Thus, we have: \[ 2I = 2 - \frac{\pi}{2} \implies I = 1 - \frac{\pi}{4} \] ### Final Result The value of the integral is: \[ I = 1 - \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

int_(0)^(pi//8) tan^(2) 2x dx is equal to

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  2. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  3. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  4. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  5. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  6. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  7. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  8. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  9. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  10. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  11. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  12. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  13. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  14. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  16. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  17. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  18. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  19. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  20. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |