Home
Class 12
MATHS
The value of int(0)^(pi//2) cosec(x-pi//...

The value of `int_(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx` is

A

2 log 3

B

`-2 log 3`

C

log 3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \csc\left(x - \frac{\pi}{3}\right) \csc\left(x - \frac{\pi}{6}\right) \, dx \), we will follow these steps: ### Step 1: Rewrite the Cosecant Function We start by rewriting the cosecant functions in terms of sine: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin\left(x - \frac{\pi}{3}\right)} \cdot \frac{1}{\sin\left(x - \frac{\pi}{6}\right)} \, dx \] ### Step 2: Multiply and Divide by a Constant Next, we multiply and divide the integrand by \(\sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right)\): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right)}{\sin\left(x - \frac{\pi}{3}\right) \sin\left(x - \frac{\pi}{6}\right)} \, dx \] ### Step 3: Simplify the Constant Calculate \(\sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right)\): \[ \sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, we have: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin\left(x - \frac{\pi}{3}\right) \sin\left(x - \frac{\pi}{6}\right)} \, dx \] ### Step 4: Use the Sine Difference Formula Using the sine difference formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] we can express the integrand: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(x - \frac{\pi}{6}\right) \cos\left(x - \frac{\pi}{3}\right) - \cos\left(x - \frac{\pi}{6}\right) \sin\left(x - \frac{\pi}{3}\right)}{\sin\left(x - \frac{\pi}{3}\right) \sin\left(x - \frac{\pi}{6}\right)} \, dx \] ### Step 5: Simplify the Integral The integral can be simplified further: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \left(\cot\left(x - \frac{\pi}{3}\right) - \cot\left(x - \frac{\pi}{6}\right)\right) \, dx \] ### Step 6: Integrate The integral of \(\cot x\) is: \[ \int \cot x \, dx = \log(\sin x) \] Thus, we have: \[ I = 2 \left[ \log(\sin\left(x - \frac{\pi}{3}\right)) - \log(\sin\left(x - \frac{\pi}{6}\right)) \right]_{0}^{\frac{\pi}{2}} \] ### Step 7: Evaluate the Limits Evaluate the limits: \[ = 2 \left[ \log(\sin\left(\frac{\pi}{2} - \frac{\pi}{3}\right)) - \log(\sin\left(\frac{\pi}{2} - \frac{\pi}{6}\right)) - \left(\log(\sin\left(-\frac{\pi}{3}\right)) - \log(\sin\left(-\frac{\pi}{6}\right))\right) \right] \] Calculating the sine values: \[ = 2 \left[ \log\left(\frac{1}{2}\right) - \log\left(\frac{\sqrt{3}}{2}\right) + \log\left(\frac{\sqrt{3}}{2}\right) - \log\left(\frac{1}{2}\right) \right] \] ### Step 8: Combine the Logarithms Using properties of logarithms: \[ = 2 \left[ \log\left(\frac{1/2}{\sqrt{3}/2}\right) \right] = 2 \log\left(\frac{1}{\sqrt{3}}\right) = -2 \log(\sqrt{3}) = -2 \cdot \frac{1}{2} \log(3) = -2 \log(3) \] ### Final Answer Thus, the value of the integral is: \[ \boxed{-2 \log 3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi) |cos x -sin x|dx is

int_(0)^(pi//2) " 1/cosec "(x-(pi)/(3)) dx=?

int_(pi//6)^(pi//2) cos x dx

int_(pi/3)^(pi/2) cosec x dx=?

The value of the integral int_(0)^(3alpha) cosec (x-alpha)cosec(x-2alpha)dx is

Find the value of int_(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|+pi/3))dx

int_(0)^(pi//6) cos x cos 3x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

The value of sin(pi+x).sin(pi-x)."cosec"^(2)x is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  2. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  3. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  4. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  5. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  6. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  7. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  8. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  9. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  10. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  11. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  12. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  13. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  14. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  15. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  16. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  17. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  18. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  19. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  20. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |