Home
Class 12
MATHS
For any natural number n, the value of t...

For any natural number n, the value of the integral
`int_(0)^(sqrt(n)) [x^(2)]dx` is

A

`n sqrt(n)+overset(n) underset(r=1)sum sqrt(r )`

B

`nsqrt(n)-overset(n)underset(r=1)sumsqrt(r )`

C

`overset(n)underset(r=1)sum sqrt(r)-nsqrt(n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\sqrt{n}} \lfloor x^2 \rfloor \, dx \), we will break it down into intervals based on the behavior of the greatest integer function \( \lfloor x^2 \rfloor \). ### Step 1: Identify the intervals for \( x \) The function \( \lfloor x^2 \rfloor \) changes its value at points where \( x^2 \) is an integer. Therefore, we need to find the points where \( x^2 = k \) for \( k = 0, 1, 2, \ldots, n \). The corresponding values of \( x \) will be \( 0, 1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n} \). ### Step 2: Set up the integral We can express the integral as a sum of integrals over the intervals: \[ I = \int_{0}^{1} \lfloor x^2 \rfloor \, dx + \int_{1}^{\sqrt{2}} \lfloor x^2 \rfloor \, dx + \int_{\sqrt{2}}^{\sqrt{3}} \lfloor x^2 \rfloor \, dx + \ldots + \int_{\sqrt{n-1}}^{\sqrt{n}} \lfloor x^2 \rfloor \, dx \] ### Step 3: Evaluate each integral 1. For \( x \) in \( [0, 1] \): \[ \lfloor x^2 \rfloor = 0 \quad \Rightarrow \quad \int_{0}^{1} 0 \, dx = 0 \] 2. For \( x \) in \( [1, \sqrt{2}] \): \[ \lfloor x^2 \rfloor = 1 \quad \Rightarrow \quad \int_{1}^{\sqrt{2}} 1 \, dx = \sqrt{2} - 1 \] 3. For \( x \) in \( [\sqrt{2}, \sqrt{3}] \): \[ \lfloor x^2 \rfloor = 2 \quad \Rightarrow \quad \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2(\sqrt{3} - \sqrt{2}) \] 4. For \( x \) in \( [\sqrt{3}, \sqrt{4}] \): \[ \lfloor x^2 \rfloor = 3 \quad \Rightarrow \quad \int_{\sqrt{3}}^{\sqrt{4}} 3 \, dx = 3(\sqrt{4} - \sqrt{3}) = 3(2 - \sqrt{3}) \] Continuing this process, for \( x \) in \( [\sqrt{k}, \sqrt{k+1}] \) where \( k = 1, 2, \ldots, n-1 \): \[ \lfloor x^2 \rfloor = k \quad \Rightarrow \quad \int_{\sqrt{k}}^{\sqrt{k+1}} k \, dx = k(\sqrt{k+1} - \sqrt{k}) \] ### Step 4: Sum the integrals Now, we can sum these integrals: \[ I = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) + \ldots + (n-1)(\sqrt{n} - \sqrt{n-1}) \] ### Step 5: Final expression After evaluating the sum, we can express \( I \) in terms of \( n \) and the summation of square roots: \[ I = n \sqrt{n} - \sum_{r=1}^{n} \sqrt{r} \] ### Conclusion Thus, the value of the integral \( I \) is: \[ I = n \sqrt{n} - \sum_{r=1}^{n} \sqrt{r} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

For any natural number n, theb value of rArr int_(0)^(n^(2))[ sqrt(x)]dx, is

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(3) sqrt(3+x^(3))dx lies in the interval

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  2. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  3. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  4. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  5. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  6. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  7. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  8. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  9. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  10. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  11. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  12. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  13. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  14. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  15. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  16. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  17. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  18. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |