Home
Class 12
MATHS
For any n in R^(+), the value of the int...

For any `n in R^(+)`, the value of the integral
`int_(0)^(n[x]) (x-[x])dx` is

A

n[x]

B

[x]

C

`(n)/(2)[x]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{n} (x - [x]) \, dx \), where \([x]\) is the greatest integer function (also known as the floor function), we can follow these steps: ### Step 1: Rewrite the integral The expression \( x - [x] \) represents the fractional part of \( x \), denoted as \( \{x\} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{n} \{x\} \, dx \] ### Step 2: Understand the periodicity The fractional part function \( \{x\} \) is periodic with a period of 1. This means that for any integer \( k \): \[ \{x + k\} = \{x\} \] Thus, we can break the integral from 0 to \( n \) into intervals of length 1. ### Step 3: Break the integral into intervals If \( n \) is a positive real number, we can express \( n \) as \( n = m + f \), where \( m = [n] \) (the greatest integer less than or equal to \( n \)) and \( f = n - m \) (the fractional part of \( n \)). We can then express the integral as: \[ I = \int_{0}^{m} \{x\} \, dx + \int_{m}^{n} \{x\} \, dx \] ### Step 4: Evaluate the integral over the integer intervals For the first part, from 0 to \( m \): \[ \int_{0}^{m} \{x\} \, dx = \sum_{k=0}^{m-1} \int_{k}^{k+1} \{x\} \, dx \] Within each interval \( [k, k+1] \), \( \{x\} = x - k \). Therefore: \[ \int_{k}^{k+1} \{x\} \, dx = \int_{k}^{k+1} (x - k) \, dx = \int_{0}^{1} u \, du = \left[ \frac{u^2}{2} \right]_{0}^{1} = \frac{1}{2} \] Thus, for \( m \) intervals: \[ \int_{0}^{m} \{x\} \, dx = m \cdot \frac{1}{2} = \frac{m}{2} \] ### Step 5: Evaluate the integral from \( m \) to \( n \) For the second part, from \( m \) to \( n \): \[ \int_{m}^{n} \{x\} \, dx = \int_{m}^{n} (x - m) \, dx = \int_{0}^{f} u \, du = \left[ \frac{u^2}{2} \right]_{0}^{f} = \frac{f^2}{2} \] ### Step 6: Combine the results Now, combining both parts, we have: \[ I = \frac{m}{2} + \frac{f^2}{2} \] Since \( m = [n] \) and \( f = n - [n] \), we can express the final result as: \[ I = \frac{[n]}{2} + \frac{(n - [n])^2}{2} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{n} (x - [x]) \, dx \) is: \[ I = \frac{[n]}{2} + \frac{(n - [n])^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

For any natural number n, the value of the integral int_(0)^(sqrt(n)) [x^(2)]dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |