Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0. ...

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin (x^3)dx=F(k)-F(1), then one of the possible values of k , is: (a) 15 (b) 16 (c) 63 (d) 64

A

27

B

18

C

9

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning outlined in the video transcript. ### Step 1: Understand the given information We have the derivative of a function \( F(x) \) given by: \[ \frac{d}{dx} F(x) = \frac{e^{\sin x}}{x}, \quad x > 0 \] We also have the integral: \[ \int_1^4 \frac{3}{x} e^{\sin (x^3)} \, dx = F(k) - F(1) \] ### Step 2: Rewrite the integral We can manipulate the integral by multiplying and dividing by \( x^2 \): \[ \int_1^4 \frac{3}{x} e^{\sin (x^3)} \, dx = \int_1^4 \frac{3x^2}{x^3} e^{\sin (x^3)} \, dx \] ### Step 3: Use substitution Let \( t = x^3 \). Then, differentiating gives us: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Also, when \( x = 1 \), \( t = 1^3 = 1 \) and when \( x = 4 \), \( t = 4^3 = 64 \). ### Step 4: Change the limits and the integral Substituting in the integral gives: \[ \int_1^{64} \frac{e^{\sin t}}{t} \, dt \] Thus, we can rewrite the original integral as: \[ \int_1^{64} \frac{e^{\sin t}}{t} \, dt = F(k) - F(1) \] ### Step 5: Relate the integrals to \( F(k) \) From the Fundamental Theorem of Calculus, we know: \[ \int_1^{64} \frac{d}{dt} F(t) \, dt = F(64) - F(1) \] This means: \[ F(64) - F(1) = F(k) - F(1) \] ### Step 6: Solve for \( k \) From the equation \( F(64) - F(1) = F(k) - F(1) \), we can deduce that: \[ F(k) = F(64) \] This implies: \[ k = 64 \] ### Conclusion Thus, one of the possible values of \( k \) is: \[ \boxed{64} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin x^3dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

If f(x)=x+1 , then write the value of d/(dx)(fof)(x) .

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

Let f(x)=x+2|x+1|+x-1|dotIff(x)=k has exactly one real solution, then the value of k is 3 (b) 0 (c) 1 (d) 2

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_e 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |