Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If [.] denotes the greatest integer function and
`f(x)={:{(3(x)-(5|x|)/(x)","x ne 0),(" "2","x= 0):}`
then `int_(-3//2)^(2) f(x)dx` is equal to

A

`-(11)/(2)`

B

`-(7)/(2)`

C

-6

D

`-(17)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral of the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 3 \lfloor x \rfloor - \frac{5 |x|}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases} \] We need to compute the integral: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx \] ### Step 1: Determine the intervals and the function values 1. **Interval \( x \in \left[-\frac{3}{2}, -1\right) \)**: - Here, \( \lfloor x \rfloor = -2 \) and \( |x| = -x \). - Thus, \( f(x) = 3(-2) - \frac{5(-x)}{x} = -6 + 5 = -1 \). 2. **Interval \( x \in [-1, 0) \)**: - Here, \( \lfloor x \rfloor = -1 \). - Thus, \( f(x) = 3(-1) - \frac{5(-x)}{x} = -3 + 5 = 2 \). 3. **Interval \( x \in (0, 1) \)**: - Here, \( \lfloor x \rfloor = 0 \). - Thus, \( f(x) = 3(0) - \frac{5x}{x} = -5 \). 4. **Interval \( x \in [1, 2) \)**: - Here, \( \lfloor x \rfloor = 1 \). - Thus, \( f(x) = 3(1) - \frac{5x}{x} = 3 - 5 = -2 \). ### Step 2: Set up the integral Now we can express the integral as a sum of integrals over the defined intervals: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = \int_{-\frac{3}{2}}^{-1} (-1) \, dx + \int_{-1}^{0} (2) \, dx + \int_{0}^{1} (-5) \, dx + \int_{1}^{2} (-2) \, dx \] ### Step 3: Calculate each integral 1. **Calculate \( \int_{-\frac{3}{2}}^{-1} (-1) \, dx \)**: \[ = -1 \cdot \left[-1 - \left(-\frac{3}{2}\right)\right] = -1 \cdot \left[-1 + \frac{3}{2}\right] = -1 \cdot \frac{1}{2} = -\frac{1}{2} \] 2. **Calculate \( \int_{-1}^{0} (2) \, dx \)**: \[ = 2 \cdot [0 - (-1)] = 2 \cdot 1 = 2 \] 3. **Calculate \( \int_{0}^{1} (-5) \, dx \)**: \[ = -5 \cdot [1 - 0] = -5 \] 4. **Calculate \( \int_{1}^{2} (-2) \, dx \)**: \[ = -2 \cdot [2 - 1] = -2 \] ### Step 4: Combine the results Now, we combine all the results: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = -\frac{1}{2} + 2 - 5 - 2 \] Calculating this gives: \[ = -\frac{1}{2} + 2 - 5 - 2 = -\frac{1}{2} - 5 = -\frac{11}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = -\frac{11}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Show that the function f given by f(x) ={{:( x^(2)+5, if x ne 0), (3, if x = 0):} is not continuous at x=0

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Which of the following function is/are periodic? (a)f(x)={1,x is rational 0,x is irrational (b)f(x)={x-[x];2n

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |