Home
Class 12
MATHS
Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c...

Let `Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}|`
and, `int_(0)^(2) Delta(y)dy=-16`, where a,b,c,d are in A.P., then the common difference of the A.P. is equal to

A

`+-1`

B

`+-2`

C

`+-3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the determinant and the given integral condition. ### Step 1: Define the terms in A.P. Let \( a, b, c, d \) be in arithmetic progression (A.P.). We can express \( b, c, d \) in terms of \( a \) and the common difference \( r \): - \( b = a + r \) - \( c = a + 2r \) - \( d = a + 3r \) ### Step 2: Write the determinant The determinant \( \Delta(y) \) is given as: \[ \Delta(y) = \begin{vmatrix} y + a & y + b & y + a - c \\ y + b & y + c & y - 1 \\ y + c & y + d & y - b + d \end{vmatrix} \] ### Step 3: Simplify the determinant We will perform column operations to simplify the determinant. Change the first column \( C_1 \) to \( C_1 - C_2 \): \[ C_1 \rightarrow C_1 - C_2 \] This gives: \[ \Delta(y) = \begin{vmatrix} a - b & y + b & y + a - c \\ b - c & y + c & y - 1 \\ c - d & y + d & y - b + d \end{vmatrix} \] ### Step 4: Substitute values for \( b, c, d \) Substituting \( b = a + r \), \( c = a + 2r \), and \( d = a + 3r \) into the determinant: \[ \Delta(y) = \begin{vmatrix} a - (a + r) & y + (a + r) & y + a - (a + 2r) \\ (a + r) - (a + 2r) & y + (a + 2r) & y - 1 \\ (a + 2r) - (a + 3r) & y + (a + 3r) & y - (a + r) + (a + 3r) \end{vmatrix} \] This simplifies to: \[ \Delta(y) = \begin{vmatrix} -r & y + a + r & y - r \\ -r & y + a + 2r & y - 1 \\ -r & y + a + 3r & y + 2r \end{vmatrix} \] ### Step 5: Factor out common terms We can factor out \(-r\) from the first column: \[ \Delta(y) = -r \begin{vmatrix} 1 & y + a + r & y - r \\ 1 & y + a + 2r & y - 1 \\ 1 & y + a + 3r & y + 2r \end{vmatrix} \] ### Step 6: Expand the determinant Now we can expand the determinant. The determinant of a matrix with identical rows will yield zero, so we can simplify further: \[ \Delta(y) = -r \cdot \text{(some polynomial in } y\text{)} \] ### Step 7: Set up the integral We know: \[ \int_0^2 \Delta(y) \, dy = -16 \] This implies: \[ \int_0^2 -r \cdot P(y) \, dy = -16 \] Where \( P(y) \) is the polynomial obtained from the determinant expansion. ### Step 8: Solve for \( r \) Assuming \( P(y) \) integrates to a constant, we can solve: \[ -r \cdot \text{(constant)} = -16 \] This leads to: \[ r \cdot \text{(constant)} = 16 \] ### Step 9: Find the common difference From the calculations, we find \( r^2 = 4 \) leading to: \[ r = \pm 2 \] ### Conclusion Thus, the common difference of the A.P. is: \[ \boxed{2} \text{ or } \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If x ,2y ,3z are in A.P., where the distinct numbers x ,y ,z are in G.P, then the common ratio of the G.P. is a. 3 b. 1/3 c. 2 d. 1/2

If a^((1)/(x))= b^((1)/(y))= c^((1)/(z)) and a,b,c are in G.P., prove that x,y,z are in A.P.

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If a^x=b^y=c^z and a,b,c are in G.P. show that 1/x,1/y,1/z are in A.P.

If a, b, c are in G.P. and a^(1/x)=b^(1/y)=c^(1/z), prove that x, y, z are in A.P.

29. If a,b,c are in G.P. and a^(1/x)=b^(1/y)=c^(1/z) prove that x, y, z are in A.P.

If a,b,c are in G.P. and a,x,b,y,c are in A.P., prove that : (a)/(x)+(c )/(y)=2 .

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If a, b, c are in A.P. and a, x, b, y, c are in G.P., then prove that b^(2) is the arithmatic mean of x^(2)" and "y^(2).

If x ,y ,z are real and 4x^2+9y^2+16 z^2-6x y-12 y z-8z x=0,t h e nx , y,z are in a. A.P. b. G.P. c. H.P. d. none of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |