Home
Class 12
MATHS
If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x)...

If `int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo)`. Then, f(x) is

A

Periodic

B

Periodic but fundamental does not exist

C

Periodic but fundamental period exits

D

Nothing can be said

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x^2 + 2x - \int_{0}^{x} t f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) Using the Fundamental Theorem of Calculus, we differentiate the left-hand side and the right-hand side: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) = f(x) \] For the right-hand side, we differentiate each term: 1. The derivative of \(x^2\) is \(2x\). 2. The derivative of \(2x\) is \(2\). 3. For the term \(-\int_{0}^{x} t f(t) \, dt\), we apply the Leibniz rule: \[ -\frac{d}{dx} \left( \int_{0}^{x} t f(t) \, dt \right) = -x f(x) \] Thus, the differentiation of the right-hand side gives: \[ 2x + 2 - x f(x) \] ### Step 2: Set the derivatives equal to each other Now we equate both sides: \[ f(x) = 2x + 2 - x f(x) \] ### Step 3: Rearrange the equation We can rearrange this equation to isolate \(f(x)\): \[ f(x) + x f(x) = 2x + 2 \] Factoring out \(f(x)\) gives: \[ f(x)(1 + x) = 2x + 2 \] ### Step 4: Solve for \(f(x)\) Now we can solve for \(f(x)\): \[ f(x) = \frac{2x + 2}{1 + x} \] ### Step 5: Simplify \(f(x)\) We can simplify \(f(x)\): \[ f(x) = \frac{2(x + 1)}{1 + x} = 2 \] Thus, we find that: \[ f(x) = 2 \] ### Conclusion The function \(f(x)\) is a constant function equal to 2.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

If f(x)=int_0^x tf(t)dt+2, then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then The number of points of intersection of f (x) and g (x) is/are:

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |