Home
Class 12
MATHS
Given that lim(n to oo)sum(r=1)^(n)(lo...

Given that
`lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2`, then
`lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n)` is equal to

A

`2^(m)e^(m((pi)/(2)-2))`

B

`2^(m)e^(m(2-(pi)/(2)))`

C

`e^m((pi)/(2)-2)`

D

`e^(2m((pi)/(2)-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the limit and the summation involved. ### Step 1: Understand the Given Limit We start with the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\log(n^2 + r^2) - 2\log n}{n} = \log 2 + \frac{\pi}{2} - 2 \] This can be rewritten as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left( \log\left(1 + \frac{r^2}{n^2}\right) \right) \] This expression is a Riemann sum for the function \( f(x) = \log(1 + x^2) \) over the interval \([0, 1]\). ### Step 2: Convert the Sum to an Integral Using the property of Riemann sums, we can convert the limit of the sum into an integral: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \log\left(1 + \frac{r^2}{n^2}\right) = \int_0^1 \log(1 + x^2) \, dx \] We know from the problem statement that this integral evaluates to: \[ \int_0^1 \log(1 + x^2) \, dx = \log 2 + \frac{\pi}{2} - 2 \] ### Step 3: Analyze the Second Limit Next, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[(n^2 + 1^2)^m (n^2 + 2^2)^m \cdots (n^2 + n^2)^m \right]^{\frac{1}{n}} \] This can be rewritten as: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[ \prod_{r=1}^{n} (n^2 + r^2)^m \right]^{\frac{1}{n}} \] ### Step 4: Simplify the Product Taking the logarithm, we have: \[ \log L = \lim_{n \to \infty} \left( \frac{1}{n} \sum_{r=1}^{n} m \log(n^2 + r^2) - 2m \log n \right) \] This simplifies to: \[ \log L = m \lim_{n \to \infty} \left( \frac{1}{n} \sum_{r=1}^{n} \log(n^2 + r^2) - 2 \log n \right) \] ### Step 5: Convert the Sum to an Integral Again Using the Riemann sum representation again: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \log(n^2 + r^2) = \int_0^1 \log(1 + x^2) \, dx + 2 \log n \] Thus, we have: \[ \log L = m \left( \log 2 + \frac{\pi}{2} - 2 \right) \] ### Step 6: Exponentiate to Find L Exponentiating both sides gives: \[ L = e^{m \left( \log 2 + \frac{\pi}{2} - 2 \right)} = 2^m e^{m \left( \frac{\pi}{2} - 2 \right)} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[(n^2 + 1^2)^m (n^2 + 2^2)^m \cdots (n^2 + n^2)^m \right]^{\frac{1}{n}} = 2^m e^{m \left( \frac{\pi}{2} - 2 \right)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Given that lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2 , then evaluate : lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n) .

Given that lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2)) , lim_(n to oo) [(1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]]^(1//n) , is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo)2^(1/n)

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin (x^3)dx=F(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3(x)-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int(-1)^1...

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  19. Let f be a differentiable function such that f'(x) = f(x) + int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3...

    Text Solution

    |