Home
Class 12
MATHS
The maximum ordinate of a point on the ...

The maximum ordinate of a point on the graph of the function f(x) = sin x( 1+ cos x ) is

A

`(2+sqrt(3))/(4)`

B

`(3sqrt(3))/(4)`

C

1

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum ordinate of the function \( f(x) = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Find the first derivative of the function We will use the product rule to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[\sin x] \cdot (1 + \cos x) + \sin x \cdot \frac{d}{dx}[1 + \cos x] \] Calculating the derivatives: \[ f'(x) = \cos x (1 + \cos x) + \sin x (-\sin x) \] This simplifies to: \[ f'(x) = \cos x (1 + \cos x) - \sin^2 x \] So, we have: \[ f'(x) = \cos x + \cos^2 x - \sin^2 x \] Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite this as: \[ f'(x) = \cos x + \cos^2 x - (1 - \cos^2 x) = 2\cos^2 x + \cos x - 1 \] ### Step 2: Set the first derivative to zero to find critical points To find the critical points, we set \( f'(x) = 0 \): \[ 2\cos^2 x + \cos x - 1 = 0 \] This is a quadratic equation in terms of \( \cos x \). Let \( u = \cos x \): \[ 2u^2 + u - 1 = 0 \] Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] This gives us two solutions: \[ u = \frac{2}{4} = \frac{1}{2} \quad \text{and} \quad u = \frac{-4}{4} = -1 \] Thus, we have: \[ \cos x = \frac{1}{2} \quad \text{or} \quad \cos x = -1 \] ### Step 3: Find the corresponding values of \( x \) 1. For \( \cos x = \frac{1}{2} \): \[ x = \frac{\pi}{3} + 2k\pi \quad \text{or} \quad x = \frac{5\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \] 2. For \( \cos x = -1 \): \[ x = \pi + 2k\pi \quad (k \in \mathbb{Z}) \] ### Step 4: Determine the nature of critical points using the second derivative Next, we need to find the second derivative \( f''(x) \) to determine if these points are maxima or minima: \[ f''(x) = \frac{d}{dx}[f'(x)] \] Calculating \( f''(x) \): \[ f''(x) = \frac{d}{dx}[2\cos^2 x + \cos x - 1] \] Using the chain rule: \[ f''(x) = 2 \cdot 2\cos x (-\sin x) + (-\sin x) = -4\cos x \sin x - \sin x = -\sin x(4\cos x + 1) \] ### Step 5: Evaluate the second derivative at critical points 1. For \( x = \frac{\pi}{3} \): \[ f''\left(\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)(4\cos\left(\frac{\pi}{3}\right) + 1) = -\frac{\sqrt{3}}{2}(4 \cdot \frac{1}{2} + 1) = -\frac{\sqrt{3}}{2}(2 + 1) = -\frac{3\sqrt{3}}{2} < 0 \] This indicates a local maximum at \( x = \frac{\pi}{3} \). ### Step 6: Find the maximum ordinate Now, we substitute \( x = \frac{\pi}{3} \) back into the original function to find the maximum ordinate: \[ f\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)(1 + \cos\left(\frac{\pi}{3}\right)) = \frac{\sqrt{3}}{2} \left(1 + \frac{1}{2}\right) = \frac{\sqrt{3}}{2} \cdot \frac{3}{2} = \frac{3\sqrt{3}}{4} \] ### Final Answer The maximum ordinate of the point on the graph of the function \( f(x) = \sin x (1 + \cos x) \) is: \[ \frac{3\sqrt{3}}{4} \]

To find the maximum ordinate of the function \( f(x) = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Find the first derivative of the function We will use the product rule to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[\sin x] \cdot (1 + \cos x) + \sin x \cdot \frac{d}{dx}[1 + \cos x] \] Calculating the derivatives: ...
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|72 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(-1)(cos x) is

The maximum distance of a point on the graph of the function y = sqrt 3 sin x + cos x from X-axis is

Draw the graph of the function f(x)=|x-1|

The function, f(x) = cos^(-1) (cos x) is

Draw the graph of the function f(x)=x^(x)

The range of the function f(x)=3|sin x|-2|cos x| is :

Draw the graph of the function f(x) = (1/x)^(x)

Draw the graph of the function f(x)=-x|x| .

The period of the function f(x)=|sin 3x|+| cos 3x| , is

Find the maximum value of the function f(x) =sin x + cos x .

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Chapter Test
  1. The maximum ordinate of a point on the graph of the function f(x) = s...

    Text Solution

    |

  2. The maximum value of ((1)/(x))^(2x^(2)) is

    Text Solution

    |

  3. If a x^2+b/xgeqc for all positive x where a >0 and b >0, show that 27 ...

    Text Solution

    |

  4. The greatest value of the funxtion f(x)=xe^(-x) " in " [0,oo] is

    Text Solution

    |

  5. Let f(x)=x^3-6x^2+12x-3 . Then at x=2 f(x) has

    Text Solution

    |

  6. In the right triangle BAC, angle A=pi/2 and a+b=8. The area of the tr...

    Text Solution

    |

  7. The range of values of a for which the function f(x)=(a^2-7a+12)cosx...

    Text Solution

    |

  8. If the function f(x) = (2a-3)(x+2 sin3)+(a-1)(sin^4x+cos^4x)+log 2...

    Text Solution

    |

  9. The function y=(ax+b)/(x-1)(x-4) has turning point at P(2,-1) Then fin...

    Text Solution

    |

  10. Find the least value of the expressions 2log(10)x-log(x)0.01, where xg...

    Text Solution

    |

  11. The maximum value of the function f(x) given by f(x)=x(x-1)^2,0ltxlt...

    Text Solution

    |

  12. The least value of a for which the equation 4/(sinx)+1/(1-sinx)=a has ...

    Text Solution

    |

  13. The minimum value of f(x)=e^((x^4-x^3+x^2)) is

    Text Solution

    |

  14. Let f(x)=a/x+x^2dot If it has a maximum at x=-3, then find the value o...

    Text Solution

    |

  15. Find the maximum value of 4sin^(2)x+3cos^(2)x+sin""(x)/(2)+cos""(x)/(2...

    Text Solution

    |

  16. The least value of the f(x) given by f(x)=tan^(-1)x-1/2 logex " in t...

    Text Solution

    |

  17. The slope of the tangent to the curve y=e^x cosx is minimum at x= a,0 ...

    Text Solution

    |

  18. The value of a for which the function f(x)={{:(tan^(-1)a -3x^2" , " ...

    Text Solution

    |

  19. The minimum value of 27^(cos3x)81^(sin3x) is

    Text Solution

    |

  20. If f(x)=(x^2-1)/(x^2+1) . For every real number x , then the minimum v...

    Text Solution

    |

  21. f(x) = |x|+|x-1| +|x-2|, then which one of the following is not correc...

    Text Solution

    |