Home
Class 12
MATHS
The foci of the conic 25x^(2) +16y^(2)-...

The foci of the conic `25x^(2) +16y^(2)-150 x=175` are :

A

`(0,+-3)`

B

`(0,+- 2)`

C

`(3,+- 3)`

D

`(0,+-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the foci of the conic given by the equation \( 25x^2 + 16y^2 - 150x = 175 \), we will follow these steps: ### Step 1: Rearranging the Equation First, we rearrange the equation to group the \( x \) and \( y \) terms together: \[ 25x^2 - 150x + 16y^2 = 175 \] ### Step 2: Completing the Square for \( x \) Next, we complete the square for the \( x \) terms. We factor out 25 from the \( x \) terms: \[ 25(x^2 - 6x) + 16y^2 = 175 \] To complete the square for \( x^2 - 6x \), we take half of -6, which is -3, square it to get 9, and rewrite the equation: \[ 25(x^2 - 6x + 9 - 9) + 16y^2 = 175 \] This simplifies to: \[ 25((x - 3)^2 - 9) + 16y^2 = 175 \] Distributing the 25 gives: \[ 25(x - 3)^2 - 225 + 16y^2 = 175 \] Now, we add 225 to both sides: \[ 25(x - 3)^2 + 16y^2 = 400 \] ### Step 3: Dividing by 400 Next, we divide the entire equation by 400 to get it into standard form: \[ \frac{25(x - 3)^2}{400} + \frac{16y^2}{400} = 1 \] This simplifies to: \[ \frac{(x - 3)^2}{16} + \frac{y^2}{25} = 1 \] ### Step 4: Identifying Parameters From the standard form of the ellipse: \[ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \] we identify: - \( h = 3 \) - \( k = 0 \) - \( a^2 = 16 \) (thus \( a = 4 \)) - \( b^2 = 25 \) (thus \( b = 5 \)) ### Step 5: Finding the Eccentricity The eccentricity \( e \) of an ellipse is given by: \[ e = \sqrt{1 - \frac{a^2}{b^2}} \] Substituting the values we found: \[ e = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 6: Finding the Foci The foci of an ellipse are located at \( (h \pm ae, k) \). Substituting the values: \[ Foci = (3 \pm 4 \cdot \frac{3}{5}, 0) = (3 \pm \frac{12}{5}, 0) \] Calculating the coordinates: - For the positive focus: \[ 3 + \frac{12}{5} = \frac{15}{5} + \frac{12}{5} = \frac{27}{5} \] - For the negative focus: \[ 3 - \frac{12}{5} = \frac{15}{5} - \frac{12}{5} = \frac{3}{5} \] Thus, the coordinates of the foci are: \[ \left( \frac{27}{5}, 0 \right) \text{ and } \left( \frac{3}{5}, 0 \right) \] ### Final Answer The foci of the conic are \( \left( \frac{27}{5}, 0 \right) \) and \( \left( \frac{3}{5}, 0 \right) \). ---

To find the foci of the conic given by the equation \( 25x^2 + 16y^2 - 150x = 175 \), we will follow these steps: ### Step 1: Rearranging the Equation First, we rearrange the equation to group the \( x \) and \( y \) terms together: \[ 25x^2 - 150x + 16y^2 = 175 \] ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the conic 9x^(2) + 25y^(2) - 18 x - 100 y = 116 is

The Foci of the ellipse (x^(2))/(16)+(y^(2))/(25)=1 are

the eccentricity to the conic 4x^(2) +16y^(2)-24x-32y=1 is

Find the foci of the conic y^(2)+2x+2y=5 .

The foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbla (x^2)/(144)-(y^2)/(81)=(1)/(25) coincide. Then, the value of b^(2) is

If the foci of the ellips (x^(2))/( 25)+ ( y^(2))/( 16) =1 and the hyperbola (x^(2))/(4) - ( y^(2))/( b^(2) ) =1 coincide ,then b^(2)=

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide write the value of b^2dot

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value

If e is the eccentricity, l is the semi latus-rectum and S. S^(1) are foci of the hyperbola 9x^(2)-16y^(2)+72x-32y=16 then ascending order of l, e SS^(1) is

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Chapter Test
  1. The foci of the conic 25x^(2) +16y^(2)-150 x=175 are :

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the cent...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^...

    Text Solution

    |

  14. If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  15. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  16. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  17. The equation of the locus of the poles of normal chords of the ellipse...

    Text Solution

    |

  18. The locus of mid-points of focal chords of the ellipse (x^2)/(a^2)+(y^...

    Text Solution

    |

  19. The locus of a point whose polar with respect to the ellipse (x^2)/(a^...

    Text Solution

    |

  20. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |

  21. The locus of the poles of tangents to the auxiliary circle with respec...

    Text Solution

    |