Home
Class 12
MATHS
Find the equation of the normal to the e...

Find the equation of the normal to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` at the positive end of the latus rectum.

A

`x+ey+e^(3)a=0`

B

`x-ey-e^(3)a=0`

C

`x-ey-e^(2)a=0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

the equation of the normal at `(x_(1),y_(1))` to the given ellipse is
`(a^(2)x)/(x_(1))-(b^(2)y)/(y_(1))=a^(2)-b^(2)`
Here,`x_(1)=ae and y_(1)=(b^(2))/(a).`
SO , the equation of the normal at positive end of the latusrectum is
`(a^(2)x)/(ae)-(b^(2)y)/(b^(2)//a)=a^(2)e^(2) [:' b^(2)=a^(2)(1-e^(2))]`
`implies (ax)/(e) -ay=a^(2)e^(2)implies x=ey -e^(3)a=0`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

Find the equation of the normal to the hyperbola x^(2)-3y^(2)=144 at the positive end of the latus rectum.

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

Find the equations of the tangent and normal to the parabola y^(2) =6x at the positive end of the latus rectum

Find the equation of tangent and normal to the ellipse x^2+8y^2=33 at (-1,2).

Find the length of latus rectum of the ellipse (x^(2))/(25) + (y^(2))/(36) = 1 .

A parabola is drawn with focus at one of the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . If the latus rectum of the ellipse and that of the parabola are same, then the eccentricity of the ellipse is (a) 1-1/(sqrt(2)) (b) 2sqrt(2)-2 (c) sqrt(2)-1 (d) none of these

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the minor axis, then prove that eccentricity is constant.

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the monor axis, then prove that eccentricity is constant.

The value of a for the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,(a > b), if the extremities of the latus rectum of the ellipse having positive ordinates lie on the parabola x^2=2(y-2) is ___

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Chapter Test
  1. Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the cent...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^...

    Text Solution

    |

  14. If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  15. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  16. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  17. The equation of the locus of the poles of normal chords of the ellipse...

    Text Solution

    |

  18. The locus of mid-points of focal chords of the ellipse (x^2)/(a^2)+(y^...

    Text Solution

    |

  19. The locus of a point whose polar with respect to the ellipse (x^2)/(a^...

    Text Solution

    |

  20. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |

  21. The locus of the poles of tangents to the auxiliary circle with respec...

    Text Solution

    |