Home
Class 12
MATHS
Chords of the ellipse (x^2)/(a^2)+(y^2)/...

Chords of the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` are drawn through the positive end of the minor axis. Then prove that their midpoints lie on the ellipse.

A

a circle

B

a parabola

C

an ellipse

D

a hyperbola

Text Solution

Verified by Experts

The correct Answer is:
C

Let (h,k) be the mid-point of a chord passing through the positive end of the minor axis of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1.` then the equation of the chord is
`(hx)/(a^(2))+(ky)/(b^(2))-1=(h^(2))/(a^(2))+(k^(2))/(b^(2))-1` [ using T=S']
`implies(hx)/(a^(2))+(ky)/(b^(2))=(h^(2))/(a^(2))+(k^(2))/(b^(2))`
this passes through (0,b)
`therefore (k)/(b)=(h^(2))/(a^(2))+(k^(2))/(b^(2))`
hence , the locus of (h,k) is `(x^(2))/(a^(2))+(y^(2))/(b^(2))=(y)/(b)` , which is an ellipse .
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the minor axis, then prove that eccentricity is constant.

If the normal at one end of the latus rectum of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 passes through one end of the monor axis, then prove that eccentricity is constant.

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

Find the locus of the middle points of chord of an ellipse x^2/a^2 + y^2/b^2 = 1 which are drawn through the positive end of the minor axis.

If two points are taken on the minor axis of an ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the same distance from the center as the foci, then prove that the sum of the squares of the perpendicular distances from these points on any tangent to the ellipse is 2a^2dot

A parabola is drawn with focus at one of the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . If the latus rectum of the ellipse and that of the parabola are same, then the eccentricity of the ellipse is (a) 1-1/(sqrt(2)) (b) 2sqrt(2)-2 (c) sqrt(2)-1 (d) none of these

The locus of the mid-points of the chords of the ellipse x^2/a^2+y^2/b^2 =1 which pass through the positive end of major axis, is.

A O B is the positive quadrant of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 in which O A=a ,O B=b . Then find the area between the arc A B and the chord A B of the ellipse.

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Chapter Test
  1. Chords of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 are drawn through the ...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the cent...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^...

    Text Solution

    |

  14. If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  15. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  16. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  17. The equation of the locus of the poles of normal chords of the ellipse...

    Text Solution

    |

  18. The locus of mid-points of focal chords of the ellipse (x^2)/(a^2)+(y^...

    Text Solution

    |

  19. The locus of a point whose polar with respect to the ellipse (x^2)/(a^...

    Text Solution

    |

  20. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |

  21. The locus of the poles of tangents to the auxiliary circle with respec...

    Text Solution

    |