Home
Class 12
MATHS
If CP and CD are semi-conjugate diameter...

If CP and CD are semi-conjugate diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, then `CP^(2) + CD^(2) =`

A

`a + b`

B

`a^(2) + b^(2)`

C

`a^(2) - b^(2)`

D

`sqrt(a^(2) + b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the squares of the lengths of the semi-conjugate diameters \( CP \) and \( CD \) of the ellipse given by the equation: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ### Step 1: Identify the Points on the Ellipse Let \( P \) and \( D \) be points on the ellipse corresponding to the semi-conjugate diameters. We can express these points in terms of a parameter \( \theta \): - Point \( P \) can be represented as \( (a \cos \theta, b \sin \theta) \). - Point \( D \) can be represented as \( (a \cos(90^\circ + \theta), b \sin(90^\circ + \theta)) \). Using the trigonometric identities: - \( \cos(90^\circ + \theta) = -\sin \theta \) - \( \sin(90^\circ + \theta) = \cos \theta \) Thus, point \( D \) can be expressed as: \[ D = (-a \sin \theta, b \cos \theta) \] ### Step 2: Calculate \( CP^2 \) The distance \( CP \) from the center \( C(0, 0) \) to point \( P \) is calculated as follows: \[ CP^2 = (a \cos \theta - 0)^2 + (b \sin \theta - 0)^2 \] \[ CP^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta \] ### Step 3: Calculate \( CD^2 \) Similarly, the distance \( CD \) from the center \( C(0, 0) \) to point \( D \) is: \[ CD^2 = (-a \sin \theta - 0)^2 + (b \cos \theta - 0)^2 \] \[ CD^2 = a^2 \sin^2 \theta + b^2 \cos^2 \theta \] ### Step 4: Sum \( CP^2 + CD^2 \) Now, we can find the sum of the squares of the distances: \[ CP^2 + CD^2 = (a^2 \cos^2 \theta + b^2 \sin^2 \theta) + (a^2 \sin^2 \theta + b^2 \cos^2 \theta) \] Combining the terms: \[ CP^2 + CD^2 = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ CP^2 + CD^2 = a^2 \cdot 1 + b^2 \cdot 1 = a^2 + b^2 \] ### Final Result Thus, we conclude that: \[ CP^2 + CD^2 = a^2 + b^2 \]

To solve the problem, we need to find the sum of the squares of the lengths of the semi-conjugate diameters \( CP \) and \( CD \) of the ellipse given by the equation: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ### Step 1: Identify the Points on the Ellipse Let \( P \) and \( D \) be points on the ellipse corresponding to the semi-conjugate diameters. We can express these points in terms of a parameter \( \theta \): ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

CP and CD are conjugate semi-diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , The locus of the mid-point of PD, is

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

If theta and phi are eccentric angles of the ends of a pair of conjugate diametres of the ellipse x^2/a^2 + y^2/b^2 = 1 , then (theta - phi) is equal to

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

If the pair of straight lines Ax^(2)+2Hxy+By^(2)=0 be conjugate diameters of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then prove that Aa^(2)=Bb^(2).

Semi-conjugate axis of the hyperbola: 5y^(2) - 9x^(2) = 36 is

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Chapter Test
  1. If CP and CD are semi-conjugate diameters of the ellipse x^(2)/a^(2) +...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the cent...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^...

    Text Solution

    |

  14. If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  15. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  16. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  17. The equation of the locus of the poles of normal chords of the ellipse...

    Text Solution

    |

  18. The locus of mid-points of focal chords of the ellipse (x^2)/(a^2)+(y^...

    Text Solution

    |

  19. The locus of a point whose polar with respect to the ellipse (x^2)/(a^...

    Text Solution

    |

  20. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |

  21. The locus of the poles of tangents to the auxiliary circle with respec...

    Text Solution

    |