Home
Class 12
MATHS
if theta is a parameter then x=a ...

if ` theta ` is a parameter then `x=a ( sin theta + cos theta),`
`y=b( sin theta - cos theta )` respresents

A

an ellipse

B

a circle

C

a pair of stright lines

D

a hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations for \( x \) and \( y \) in terms of the parameter \( \theta \). ### Step-by-Step Solution: 1. **Given Equations**: \[ x = a(\sin \theta + \cos \theta) \] \[ y = b(\sin \theta - \cos \theta) \] 2. **Rearranging the Equations**: We can express \( \sin \theta \) and \( \cos \theta \) in terms of \( x \) and \( y \): \[ \frac{x}{a} = \sin \theta + \cos \theta \] \[ \frac{y}{b} = \sin \theta - \cos \theta \] 3. **Squaring Both Sides**: Square both equations: \[ \left(\frac{x}{a}\right)^2 = (\sin \theta + \cos \theta)^2 \] \[ \left(\frac{y}{b}\right)^2 = (\sin \theta - \cos \theta)^2 \] 4. **Expanding the Squares**: Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ \left(\frac{x}{a}\right)^2 = \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta \] \[ \left(\frac{y}{b}\right)^2 = \sin^2 \theta + \cos^2 \theta - 2\sin \theta \cos \theta \] 5. **Using the Pythagorean Identity**: Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \left(\frac{x}{a}\right)^2 = 1 + 2\sin \theta \cos \theta \] \[ \left(\frac{y}{b}\right)^2 = 1 - 2\sin \theta \cos \theta \] 6. **Adding the Two Equations**: Now, add the two squared equations: \[ \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = (1 + 2\sin \theta \cos \theta) + (1 - 2\sin \theta \cos \theta) \] This simplifies to: \[ \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 2 \] 7. **Rearranging the Equation**: Dividing through by 2 gives: \[ \frac{x^2}{2a^2} + \frac{y^2}{2b^2} = 1 \] 8. **Conclusion**: The final equation represents an ellipse in the standard form: \[ \frac{x^2}{(a/\sqrt{2})^2} + \frac{y^2}{(b/\sqrt{2})^2} = 1 \] Therefore, the locus of the point \( (x, y) \) is an ellipse. ### Final Answer: The given equations represent an ellipse.
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If tan theta = p/q then (p sin theta - q cos theta)/(p sin theta + q cos theta)=

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos theta)/(12 sin theta + 3 cos theta)

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If Z = (A sin theta + B cos theta)/(A + B) , then

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Exercise
  1. If the focal distance of an end of the minor axis of an ellipse (ref...

    Text Solution

    |

  2. if 2y = x and 3y + 4x=0 are the equations of a pair of conjuga...

    Text Solution

    |

  3. if theta is a parameter then x=a ( sin theta + cos theta), y...

    Text Solution

    |

  4. The distance from the foci of P (x(1), y(1)) on the ellipse x^2/9+y^2/...

    Text Solution

    |

  5. Find the equation for the ellipse that satisfies the given conditions...

    Text Solution

    |

  6. The eccentricity of the curve x^(2)-4x+4y^(2)=12 is

    Text Solution

    |

  7. The parametric representation of a point on the ellipse whose foci are...

    Text Solution

    |

  8. if S and S are two foci of an ellipse (x^(2))/(a^(2))+(y^(2))/(b^...

    Text Solution

    |

  9. The eccentricity of the ellipse represented by 25 x^2+16 y^2-150 x-175...

    Text Solution

    |

  10. the length of the latusrectum of the ellipse 5x^(2) + 9x^(2)=45...

    Text Solution

    |

  11. The equation of the passing through the of the ellipse (x^(2))/(16)+(y...

    Text Solution

    |

  12. the eccentricity to the conic 4x^(2) +16y^(2)-24x-32y=1 is

    Text Solution

    |

  13. A set of points is such that each point is three times as far away fro...

    Text Solution

    |

  14. the foci of an ellipse are (0+-6) and the equation of the direc...

    Text Solution

    |

  15. An ellipse has its centre at (1,-1) and semi major axis =8 and it pass...

    Text Solution

    |

  16. Let L L ' be the latusrectum and S be a focus of the ellipse (x^...

    Text Solution

    |

  17. the equation of the axes of the ellispe 3x^(2)+4y^(2)+6x-8y-5=0 ...

    Text Solution

    |

  18. the equations to the directrices of the ellipse 4(x-3)^(2)+9(y+2)...

    Text Solution

    |

  19. if the vertices of an ellipse are (-12,4) and (14,4) and eccentr...

    Text Solution

    |

  20. if the coordinates of the vertices of an ellipse are (-6,1) and (...

    Text Solution

    |