Home
Class 12
MATHS
The tangent at any point P on the ellips...

The tangent at any point P on the ellipse meets the tangents at the vertices A & `A^1` of the ellipse `x^2/a^2 + y^2/b^2 = 1` at L and M respectively. Then `AL.A^1M`= (A) `a^2` (B) `b^2` (C) `a^2+b^2` (D) `ab`

A

a + b

B

`a^(2) + b^(2)`

C

`a^(2)`

D

`b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the lengths \( AL \) and \( A'M \) where \( L \) and \( M \) are the points where the tangents at the vertices \( A \) and \( A' \) of the ellipse intersect with the tangent at point \( P \) on the ellipse. ### Step-by-Step Solution: 1. **Identify the Ellipse and Vertices**: The equation of the ellipse is given by: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] The vertices of the ellipse are \( A(a, 0) \) and \( A'(-a, 0) \). 2. **Parametric Coordinates of Point P**: A point \( P \) on the ellipse can be represented parametrically as: \[ P(A \cos \theta, B \sin \theta) \] 3. **Equation of Tangent at Point P**: The equation of the tangent to the ellipse at point \( P \) is given by: \[ \frac{x}{a \cos \theta} + \frac{y}{b \sin \theta} = 1 \] 4. **Finding Point L**: To find point \( L \), we substitute \( x = -a \) into the tangent equation: \[ \frac{-a}{a \cos \theta} + \frac{y}{b \sin \theta} = 1 \] Simplifying gives: \[ -\frac{1}{\cos \theta} + \frac{y}{b \sin \theta} = 1 \implies \frac{y}{b \sin \theta} = 1 + \frac{1}{\cos \theta} \] Thus, \[ y = b \sin \theta \left(1 + \frac{1}{\cos \theta}\right) = b \sin \theta \left(\frac{\cos \theta + 1}{\cos \theta}\right) \] Therefore, the coordinates of point \( L \) are: \[ L\left(-a, \frac{b(1 + \cos \theta)}{\cos \theta}\right) \] 5. **Finding Point M**: To find point \( M \), we substitute \( x = a \) into the tangent equation: \[ \frac{a}{a \cos \theta} + \frac{y}{b \sin \theta} = 1 \] Simplifying gives: \[ \frac{1}{\cos \theta} + \frac{y}{b \sin \theta} = 1 \implies \frac{y}{b \sin \theta} = 1 - \frac{1}{\cos \theta} \] Thus, \[ y = b \sin \theta \left(1 - \frac{1}{\cos \theta}\right) = b \sin \theta \left(\frac{\cos \theta - 1}{\cos \theta}\right) \] Therefore, the coordinates of point \( M \) are: \[ M\left(a, \frac{b(\cos \theta - 1)}{\cos \theta}\right) \] 6. **Calculating Distances AL and A'M**: The distance \( AL \) is the vertical distance between points \( A \) and \( L \): \[ AL = \left| 0 - \frac{b(1 + \cos \theta)}{\cos \theta} \right| = \frac{b(1 + \cos \theta)}{\cos \theta} \] The distance \( A'M \) is the vertical distance between points \( A' \) and \( M \): \[ A'M = \left| 0 - \frac{b(\cos \theta - 1)}{\cos \theta} \right| = \frac{b(1 - \cos \theta)}{\cos \theta} \] 7. **Finding the Product \( AL \cdot A'M \)**: Now, we compute the product: \[ AL \cdot A'M = \left(\frac{b(1 + \cos \theta)}{\cos \theta}\right) \cdot \left(\frac{b(1 - \cos \theta)}{\cos \theta}\right) \] Simplifying gives: \[ = \frac{b^2(1 - \cos^2 \theta)}{\cos^2 \theta} = \frac{b^2 \sin^2 \theta}{\cos^2 \theta} \] 8. **Final Result**: Since \( \sin^2 \theta + \cos^2 \theta = 1 \), the product simplifies to: \[ AL \cdot A'M = b^2 \] Thus, the final answer is: \[ \boxed{b^2} \]
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|80 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

The locus of the poles of tangents to the auxiliary circle with respect to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of mid point of tangent intercepted between area of ellipse x^2/a^2 +y^2/b^2 = 1 is

The locus of the poles of tangents to the director circle of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 with respect to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 is

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg . (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

If the tangents drawn through the point (1, 2 sqrt(3) to the ellipse x^2/9 + y^2/b^2 = 1 are at right angles, then the value of b is (A) 1 (B) -1 (C) 2 (D) 4

If the normal at point P (theta) on the ellipse x^2/a^2 + y^2/b^2 = 1 meets the axes of x and y at M and N respectively, show that PM : PN = b^2 : a^2 .

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

Prove that the product of the perpendiculars from the foci upon any tangent to the ellipse x^2/a^2+y^2/b^2=1 is b^2

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

OBJECTIVE RD SHARMA ENGLISH-ELLIPSE-Chapter Test
  1. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  2. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  3. If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^...

    Text Solution

    |

  4. If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  5. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  6. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  7. The equation of the locus of the poles of normal chords of the ellipse...

    Text Solution

    |

  8. The locus of mid-points of focal chords of the ellipse (x^2)/(a^2)+(y^...

    Text Solution

    |

  9. The locus of a point whose polar with respect to the ellipse (x^2)/(a^...

    Text Solution

    |

  10. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |

  11. The locus of the poles of tangents to the auxiliary circle with respec...

    Text Solution

    |

  12. The locus of the poles of tangents to the director circle of the ellip...

    Text Solution

    |

  13. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  14. If the tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 makes inte...

    Text Solution

    |

  15. If the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 make angles a...

    Text Solution

    |

  16. If C is centre of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 and the no...

    Text Solution

    |

  17. If the normals at P(theta) and Q(pi/2+theta) to the ellipse (x^2)/(a^2...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. The tangent at point P on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 cu...

    Text Solution

    |

  20. If the lengths of major and semi-minor axes of an ellipse are 4 and sq...

    Text Solution

    |