Home
Class 11
MATHS
Find the square root of the following : ...

Find the square root of the following :
(i) `3-4i`
(ii) `4+6isqrt(5)`
(iii) `-i`
(iv) `8i`
(v) `-7+24i`
(vi) `-24- 10i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square roots of the given complex numbers, we will use the method of expressing the square root in the form \( x + iy \) and then squaring both sides to compare real and imaginary parts. ### (i) Find the square root of \( 3 - 4i \) 1. Let \( \sqrt{3 - 4i} = x + iy \). 2. Squaring both sides gives: \[ 3 - 4i = (x + iy)^2 = x^2 - y^2 + 2xyi \] 3. From this, we can equate the real and imaginary parts: - Real part: \( x^2 - y^2 = 3 \) (1) - Imaginary part: \( 2xy = -4 \) (2) 4. From (2), we can express \( xy \): \[ xy = -2 \quad \Rightarrow \quad y = \frac{-2}{x} \quad (3) \] 5. Substitute (3) into (1): \[ x^2 - \left(\frac{-2}{x}\right)^2 = 3 \] \[ x^2 - \frac{4}{x^2} = 3 \] \[ x^4 - 3x^2 - 4 = 0 \] 6. Let \( z = x^2 \). Then the equation becomes: \[ z^2 - 3z - 4 = 0 \] 7. Solving this using the quadratic formula: \[ z = \frac{3 \pm \sqrt{(3)^2 + 4 \cdot 4}}{2} = \frac{3 \pm 5}{2} \] \[ z = 4 \quad \text{or} \quad z = -1 \] Thus, \( x^2 = 4 \) gives \( x = \pm 2 \) (since \( z = -1 \) is not valid). 8. Substitute back to find \( y \): - If \( x = 2 \): \[ y = \frac{-2}{2} = -1 \] - If \( x = -2 \): \[ y = \frac{-2}{-2} = 1 \] 9. Therefore, the square roots are: \[ \sqrt{3 - 4i} = \pm (2 - i) \] ### (ii) Find the square root of \( 4 + 6i\sqrt{5} \) 1. Let \( \sqrt{4 + 6i\sqrt{5}} = x + iy \). 2. Squaring gives: \[ 4 + 6i\sqrt{5} = x^2 - y^2 + 2xyi \] 3. Equating parts: - \( x^2 - y^2 = 4 \) (1) - \( 2xy = 6\sqrt{5} \) (2) 4. From (2): \[ xy = 3\sqrt{5} \quad \Rightarrow \quad y = \frac{3\sqrt{5}}{x} \quad (3) \] 5. Substitute (3) into (1): \[ x^2 - \left(\frac{3\sqrt{5}}{x}\right)^2 = 4 \] \[ x^2 - \frac{45}{x^2} = 4 \] \[ x^4 - 4x^2 - 45 = 0 \] 6. Let \( z = x^2 \): \[ z^2 - 4z - 45 = 0 \] 7. Solving: \[ z = \frac{4 \pm \sqrt{16 + 180}}{2} = \frac{4 \pm 14}{2} \] \[ z = 9 \quad \text{or} \quad z = -5 \] Thus, \( x^2 = 9 \) gives \( x = \pm 3 \). 8. Substitute back to find \( y \): - If \( x = 3 \): \[ y = \frac{3\sqrt{5}}{3} = \sqrt{5} \] - If \( x = -3 \): \[ y = \frac{3\sqrt{5}}{-3} = -\sqrt{5} \] 9. Therefore, the square roots are: \[ \sqrt{4 + 6i\sqrt{5}} = \pm (3 + i\sqrt{5}) \] ### (iii) Find the square root of \( -i \) 1. Let \( \sqrt{-i} = x + iy \). 2. Squaring gives: \[ -i = x^2 - y^2 + 2xyi \] 3. Equating parts: - \( x^2 - y^2 = 0 \) (1) - \( 2xy = -1 \) (2) 4. From (1): \[ x^2 = y^2 \quad \Rightarrow \quad y = \pm x \quad (3) \] 5. Substitute (3) into (2): - If \( y = x \): \[ 2x^2 = -1 \quad \text{(not valid)} \] - If \( y = -x \): \[ -2x^2 = -1 \quad \Rightarrow \quad x^2 = \frac{1}{2} \quad \Rightarrow \quad x = \pm \frac{1}{\sqrt{2}} \] 6. Thus, \( y = \mp \frac{1}{\sqrt{2}} \). 7. Therefore, the square roots are: \[ \sqrt{-i} = \pm \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right) \] ### (iv) Find the square root of \( 8i \) 1. Let \( \sqrt{8i} = x + iy \). 2. Squaring gives: \[ 8i = x^2 - y^2 + 2xyi \] 3. Equating parts: - \( x^2 - y^2 = 0 \) (1) - \( 2xy = 8 \) (2) 4. From (1): \[ x^2 = y^2 \quad \Rightarrow \quad y = \pm x \quad (3) \] 5. Substitute (3) into (2): - If \( y = x \): \[ 2x^2 = 8 \quad \Rightarrow \quad x^2 = 4 \quad \Rightarrow \quad x = \pm 2 \] - If \( y = -x \): \[ -2x^2 = 8 \quad \text{(not valid)} \] 6. Therefore, \( y = 2 \) when \( x = 2 \) or \( y = -2 \) when \( x = -2 \). 7. Thus, the square roots are: \[ \sqrt{8i} = \pm (2 + 2i) \] ### (v) Find the square root of \( -7 + 24i \) 1. Let \( \sqrt{-7 + 24i} = x + iy \). 2. Squaring gives: \[ -7 + 24i = x^2 - y^2 + 2xyi \] 3. Equating parts: - \( x^2 - y^2 = -7 \) (1) - \( 2xy = 24 \) (2) 4. From (2): \[ xy = 12 \quad \Rightarrow \quad y = \frac{12}{x} \quad (3) \] 5. Substitute (3) into (1): \[ x^2 - \left(\frac{12}{x}\right)^2 = -7 \] \[ x^2 - \frac{144}{x^2} = -7 \] \[ x^4 + 7x^2 - 144 = 0 \] 6. Let \( z = x^2 \): \[ z^2 + 7z - 144 = 0 \] 7. Solving: \[ z = \frac{-7 \pm \sqrt{49 + 576}}{2} = \frac{-7 \pm 25}{2} \] \[ z = 9 \quad \text{or} \quad z = -16 \] Thus, \( x^2 = 9 \) gives \( x = \pm 3 \). 8. Substitute back to find \( y \): - If \( x = 3 \): \[ y = \frac{12}{3} = 4 \] - If \( x = -3 \): \[ y = \frac{12}{-3} = -4 \] 9. Therefore, the square roots are: \[ \sqrt{-7 + 24i} = \pm (3 + 4i) \] ### (vi) Find the square root of \( -24 - 10i \) 1. Let \( \sqrt{-24 - 10i} = x + iy \). 2. Squaring gives: \[ -24 - 10i = x^2 - y^2 + 2xyi \] 3. Equating parts: - \( x^2 - y^2 = -24 \) (1) - \( 2xy = -10 \) (2) 4. From (2): \[ xy = -5 \quad \Rightarrow \quad y = \frac{-5}{x} \quad (3) \] 5. Substitute (3) into (1): \[ x^2 - \left(\frac{-5}{x}\right)^2 = -24 \] \[ x^2 - \frac{25}{x^2} = -24 \] \[ x^4 - 24x^2 - 25 = 0 \] 6. Let \( z = x^2 \): \[ z^2 - 24z - 25 = 0 \] 7. Solving: \[ z = \frac{24 \pm \sqrt{576 + 100}}{2} = \frac{24 \pm 26}{2} \] \[ z = 25 \quad \text{or} \quad z = -1 \] Thus, \( x^2 = 25 \) gives \( x = \pm 5 \). 8. Substitute back to find \( y \): - If \( x = 5 \): \[ y = \frac{-5}{5} = -1 \] - If \( x = -5 \): \[ y = \frac{-5}{-5} = 1 \] 9. Therefore, the square roots are: \[ \sqrt{-24 - 10i} = \pm (5 - i) \] ### Summary of Results 1. \( \sqrt{3 - 4i} = \pm (2 - i) \) 2. \( \sqrt{4 + 6i\sqrt{5}} = \pm (3 + i\sqrt{5}) \) 3. \( \sqrt{-i} = \pm \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right) \) 4. \( \sqrt{8i} = \pm (2 + 2i) \) 5. \( \sqrt{-7 + 24i} = \pm (3 + 4i) \) 6. \( \sqrt{-24 - 10i} = \pm (5 - i) \)

To find the square roots of the given complex numbers, we will use the method of expressing the square root in the form \( x + iy \) and then squaring both sides to compare real and imaginary parts. ### (i) Find the square root of \( 3 - 4i \) 1. Let \( \sqrt{3 - 4i} = x + iy \). 2. Squaring both sides gives: \[ 3 - 4i = (x + iy)^2 = x^2 - y^2 + 2xyi ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the square roots of the following: 8i

Find the square roots of the following: (i) 7-24 i

Find the square roots of the following: 15-8i

Find the square roots of the following: -8\- 6i

Find the square roots of the following: 7-24 i (ii) 5+12 i

Find the square root of -7-24i

Find the square root of -6+8i.

Find the square root of 7"-" 24 i

Find the square root of (a) -8-6i

Find the square root of (-8 -6i) .

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  2. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  3. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  4. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  5. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  6. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  7. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  8. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  9. If ((a^(2)+1)^(2))/(2a-i) = a + iy , then what is the value of x^...

    Text Solution

    |

  10. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  11. The complex number z is purely imaginary , if

    Text Solution

    |

  12. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  13. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  14. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  15. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  16. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  17. If (1+x)/(1 -x)=cos2theta +isin2theta, prove that that x=itantheta.

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |