Home
Class 11
MATHS
If x+iy=3/(2+costheta +i sin theta), the...

If `x+iy=3/(2+costheta +i sin theta)`, then show that `x^2+y^2=4x-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( x + iy = \frac{3}{2 + \cos \theta + i \sin \theta} \), then \( x^2 + y^2 = 4x - 3 \). ### Step-by-Step Solution **Step 1: Start with the given equation.** \[ x + iy = \frac{3}{2 + \cos \theta + i \sin \theta} \] **Step 2: Rationalize the denominator.** To simplify the right-hand side, multiply the numerator and the denominator by the conjugate of the denominator: \[ x + iy = \frac{3(2 + \cos \theta - i \sin \theta)}{(2 + \cos \theta)^2 + \sin^2 \theta} \] Here, the denominator simplifies as follows: \[ (2 + \cos \theta)^2 + \sin^2 \theta = 4 + 4\cos \theta + \cos^2 \theta + \sin^2 \theta = 4 + 4\cos \theta + 1 = 5 + 4\cos \theta \] **Step 3: Substitute back into the equation.** Now we can rewrite \( x + iy \): \[ x + iy = \frac{3(2 + \cos \theta - i \sin \theta)}{5 + 4\cos \theta} \] This gives us: \[ x = \frac{3(2 + \cos \theta)}{5 + 4\cos \theta}, \quad y = \frac{-3\sin \theta}{5 + 4\cos \theta} \] **Step 4: Calculate \( x^2 + y^2 \).** Now we need to find \( x^2 + y^2 \): \[ x^2 + y^2 = \left(\frac{3(2 + \cos \theta)}{5 + 4\cos \theta}\right)^2 + \left(\frac{-3\sin \theta}{5 + 4\cos \theta}\right)^2 \] \[ = \frac{9(2 + \cos \theta)^2 + 9\sin^2 \theta}{(5 + 4\cos \theta)^2} \] \[ = \frac{9((2 + \cos \theta)^2 + \sin^2 \theta)}{(5 + 4\cos \theta)^2} \] **Step 5: Simplify the numerator.** Now simplify the numerator: \[ (2 + \cos \theta)^2 + \sin^2 \theta = 4 + 4\cos \theta + \cos^2 \theta + \sin^2 \theta = 4 + 4\cos \theta + 1 = 5 + 4\cos \theta \] Thus: \[ x^2 + y^2 = \frac{9(5 + 4\cos \theta)}{(5 + 4\cos \theta)^2} = \frac{9}{5 + 4\cos \theta} \] **Step 6: Calculate \( 4x - 3 \).** Now calculate \( 4x - 3 \): \[ 4x - 3 = 4\left(\frac{3(2 + \cos \theta)}{5 + 4\cos \theta}\right) - 3 \] \[ = \frac{12(2 + \cos \theta)}{5 + 4\cos \theta} - 3 = \frac{12(2 + \cos \theta) - 3(5 + 4\cos \theta)}{5 + 4\cos \theta} \] \[ = \frac{24 + 12\cos \theta - 15 - 12\cos \theta}{5 + 4\cos \theta} = \frac{9}{5 + 4\cos \theta} \] **Step 7: Conclusion.** We have shown that: \[ x^2 + y^2 = \frac{9}{5 + 4\cos \theta} = 4x - 3 \] Thus, we conclude that: \[ x^2 + y^2 = 4x - 3 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If x +y= 3-cos4theta and x-y=4sin2theta then

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2 + 4 x y + y^2 = A X^2 + B Y^2 0 <= theta <= pi/2, then

2sin^(2)theta + 3 costheta =0

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If x cos theta + y sin theta =2 is perpendicular to the line x-y =3 then what is one of the value of theta ?

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  2. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  3. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  4. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  5. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  6. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  7. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  8. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  9. If ((a^(2)+1)^(2))/(2a-i) = a + iy , then what is the value of x^...

    Text Solution

    |

  10. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  11. The complex number z is purely imaginary , if

    Text Solution

    |

  12. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  13. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  14. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  15. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  16. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  17. If (1+x)/(1 -x)=cos2theta +isin2theta, prove that that x=itantheta.

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |