Home
Class 11
MATHS
If x= cos alpha+ i sin alpha, y = cos be...

If `x= cos alpha+ i sin alpha, y = cos beta+ i sin beta,` then prove that `(x-y)/(x+y)``=i (tan )(alpha-beta)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{x-y}{x+y} = i \tan \left(\frac{\alpha - \beta}{2}\right)\), where \(x = \cos \alpha + i \sin \alpha\) and \(y = \cos \beta + i \sin \beta\), we can follow these steps: ### Step 1: Express \(x\) and \(y\) in exponential form Using Euler's formula, we can express \(x\) and \(y\) as: \[ x = e^{i \alpha}, \quad y = e^{i \beta} \] ### Step 2: Substitute \(x\) and \(y\) into the expression We need to find \(\frac{x-y}{x+y}\): \[ \frac{x-y}{x+y} = \frac{e^{i \alpha} - e^{i \beta}}{e^{i \alpha} + e^{i \beta}} \] ### Step 3: Factor out \(e^{i \beta}\) In both the numerator and the denominator, we can factor out \(e^{i \beta}\): \[ = \frac{e^{i \beta} \left(e^{i (\alpha - \beta)} - 1\right)}{e^{i \beta} \left(e^{i (\alpha - \beta)} + 1\right)} \] This simplifies to: \[ = \frac{e^{i (\alpha - \beta)} - 1}{e^{i (\alpha - \beta)} + 1} \] ### Step 4: Use the identity for \(e^{i\theta}\) Using the identity \(e^{i\theta} = \cos \theta + i \sin \theta\), we can write: \[ = \frac{\left(\cos(\alpha - \beta) + i \sin(\alpha - \beta)\right) - 1}{\left(\cos(\alpha - \beta) + i \sin(\alpha - \beta)\right) + 1} \] ### Step 5: Simplify the expression This gives us: \[ = \frac{\cos(\alpha - \beta) - 1 + i \sin(\alpha - \beta)}{\cos(\alpha - \beta) + 1 + i \sin(\alpha - \beta)} \] ### Step 6: Apply trigonometric identities Using the identities \(1 - \cos(2\theta) = 2 \sin^2(\theta)\) and \(1 + \cos(2\theta) = 2 \cos^2(\theta)\): - The numerator becomes: \[ \cos(\alpha - \beta) - 1 = -2 \sin^2\left(\frac{\alpha - \beta}{2}\right) \] - The denominator becomes: \[ \cos(\alpha - \beta) + 1 = 2 \cos^2\left(\frac{\alpha - \beta}{2}\right) \] ### Step 7: Substitute back into the expression Now substituting these into our expression: \[ = \frac{-2 \sin^2\left(\frac{\alpha - \beta}{2}\right) + i \sin(\alpha - \beta)}{2 \cos^2\left(\frac{\alpha - \beta}{2}\right) + i \sin(\alpha - \beta)} \] ### Step 8: Factor out common terms Factoring out \(\sin\left(\frac{\alpha - \beta}{2}\right)\) from the numerator and denominator: \[ = \frac{-\sin\left(\frac{\alpha - \beta}{2}\right) + i \cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha - \beta}{2}\right) + i \sin\left(\frac{\alpha - \beta}{2}\right)} \] ### Step 9: Recognize the tangent form This can be recognized as: \[ = i \tan\left(\frac{\alpha - \beta}{2}\right) \] ### Conclusion Thus, we have proven that: \[ \frac{x-y}{x+y} = i \tan\left(\frac{\alpha - \beta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).

If cos alpha+ cos beta =1/3 and sin alpha+sin beta=1/4 prove that cos[(alpha-beta)/2] =+-(5/24)

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan) theta/2=(tan alpha/2-tan beta/2)/(1-t a n alpha/2 tan beta/2).

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If cos(alpha+beta)=0 then sin(alpha+2beta)=

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alpha)/(2)sin""(beta)/(2)=1, then

If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gamma and b/c+c/a+a/b=1, then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  2. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  3. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  4. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  5. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  6. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  7. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  8. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  9. If ((a^(2)+1)^(2))/(2a-i) = a + iy , then what is the value of x^...

    Text Solution

    |

  10. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  11. The complex number z is purely imaginary , if

    Text Solution

    |

  12. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  13. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  14. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  15. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  16. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  17. If (1+x)/(1 -x)=cos2theta +isin2theta, prove that that x=itantheta.

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |