Home
Class 11
MATHS
Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sq...

Evaluate : `(4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( (4 + 3\sqrt{-20})^{1/2} + (4 - 3\sqrt{-20})^{1/2} \), we can follow these steps: ### Step 1: Simplify the Square Roots First, we simplify \( \sqrt{-20} \): \[ \sqrt{-20} = \sqrt{20} \cdot \sqrt{-1} = \sqrt{20} \cdot i = 2\sqrt{5} \cdot i \] Thus, we can rewrite the expression as: \[ (4 + 3(2\sqrt{5}i))^{1/2} + (4 - 3(2\sqrt{5}i))^{1/2} \] This simplifies to: \[ (4 + 6\sqrt{5}i)^{1/2} + (4 - 6\sqrt{5}i)^{1/2} \] ### Step 2: Set Up for Comparison Let \( z_1 = (4 + 6\sqrt{5}i)^{1/2} \) and \( z_2 = (4 - 6\sqrt{5}i)^{1/2} \). We want to find \( z_1 + z_2 \). ### Step 3: Express in Terms of Real and Imaginary Parts Assume \( z_1 = x + yi \) and \( z_2 = u + vi \). Then: \[ z_1^2 = 4 + 6\sqrt{5}i \quad \text{and} \quad z_2^2 = 4 - 6\sqrt{5}i \] From \( z_1^2 = x^2 - y^2 + 2xyi \), we have: 1. \( x^2 - y^2 = 4 \) 2. \( 2xy = 6\sqrt{5} \) From \( z_2^2 = u^2 - v^2 - 2uv i \), we have: 1. \( u^2 - v^2 = 4 \) 2. \( -2uv = -6\sqrt{5} \) or \( 2uv = 6\sqrt{5} \) ### Step 4: Solve the System of Equations From the equations, we can combine: 1. \( x^2 - y^2 = 4 \) 2. \( u^2 - v^2 = 4 \) 3. \( 2xy = 6\sqrt{5} \) 4. \( 2uv = 6\sqrt{5} \) ### Step 5: Find \( x^2 + y^2 \) and \( u^2 + v^2 \) Using the identity: \[ x^2 + y^2 = \sqrt{(x^2 - y^2)^2 + (2xy)^2} \] Substituting the values: \[ x^2 + y^2 = \sqrt{4^2 + (6\sqrt{5})^2} = \sqrt{16 + 180} = \sqrt{196} = 14 \] ### Step 6: Solve for \( x \) and \( y \) Now, we can add the equations: \[ x^2 + y^2 + x^2 - y^2 = 14 + 4 \] This simplifies to: \[ 2x^2 = 18 \implies x^2 = 9 \implies x = \pm 3 \] Substituting back to find \( y^2 \): \[ 9 + y^2 = 14 \implies y^2 = 5 \implies y = \pm \sqrt{5} \] Thus, we have: \[ z_1 = 3 + i\sqrt{5} \quad \text{and} \quad z_2 = 3 - i\sqrt{5} \] ### Step 7: Add the Results Adding \( z_1 \) and \( z_2 \): \[ z_1 + z_2 = (3 + i\sqrt{5}) + (3 - i\sqrt{5}) = 6 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{6} \]

To evaluate the expression \( (4 + 3\sqrt{-20})^{1/2} + (4 - 3\sqrt{-20})^{1/2} \), we can follow these steps: ### Step 1: Simplify the Square Roots First, we simplify \( \sqrt{-20} \): \[ \sqrt{-20} = \sqrt{20} \cdot \sqrt{-1} = \sqrt{20} \cdot i = 2\sqrt{5} \cdot i \] Thus, we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : [(3sqrt(8))-(1)/(2)]^(4).

Prove that : [4 + 3 sqrt(-20)]^((1)/(2)) + [4 -3 sqrt(-20)]^((1)/(2))= 6

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Find (a+b)^4-(a-b)^4 . Hence, evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4 .

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3) , n in N (iv) sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9)

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Find (1+x)^(4) + (1-x)^(4) . Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(4)

Evaluate: intx/(sqrt(x+4))\ dx (ii) int(2-3x)/(sqrt(1+3x))\ dx

Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4 .

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  2. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  3. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  4. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  5. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  6. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  7. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  8. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  9. If ((a^(2)+1)^(2))/(2a-i) = a + iy , then what is the value of x^...

    Text Solution

    |

  10. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  11. The complex number z is purely imaginary , if

    Text Solution

    |

  12. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  13. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  14. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  15. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  16. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  17. If (1+x)/(1 -x)=cos2theta +isin2theta, prove that that x=itantheta.

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |