Home
Class 12
MATHS
if A=[{:(2,8),(-7,3):}]and B=[{:(-1,3),(...

`if A=[{:(2,8),(-7,3):}]and B=[{:(-1,3),(2,-4):}]`, then show that : (i) (A+B)'=A+B' (ii) (A+2B)'=A'+2B' (iii) (AB)'=B'A'

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will verify three statements involving the matrices \( A \) and \( B \). Given: \[ A = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix} \] ### (i) Show that \( (A + B)' = A + B' \) **Step 1: Calculate \( A + B \)** \[ A + B = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix} + \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 2 + (-1) & 8 + 3 \\ -7 + 2 & 3 + (-4) \end{pmatrix} = \begin{pmatrix} 1 & 11 \\ -5 & -1 \end{pmatrix} \] **Step 2: Calculate \( (A + B)' \)** \[ (A + B)' = \begin{pmatrix} 1 & 11 \\ -5 & -1 \end{pmatrix}' = \begin{pmatrix} 1 & -5 \\ 11 & -1 \end{pmatrix} \] **Step 3: Calculate \( B' \)** \[ B' = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix}' = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} \] **Step 4: Calculate \( A + B' \)** \[ A + B' = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 2 + (-1) & 8 + 2 \\ -7 + 3 & 3 + (-4) \end{pmatrix} = \begin{pmatrix} 1 & 10 \\ -4 & -1 \end{pmatrix} \] **Step 5: Compare \( (A + B)' \) and \( A + B' \)** \[ (A + B)' = \begin{pmatrix} 1 & -5 \\ 11 & -1 \end{pmatrix} \quad \text{and} \quad A + B' = \begin{pmatrix} 1 & 10 \\ -4 & -1 \end{pmatrix} \] Since \( (A + B)' \neq A + B' \), the first statement is incorrect. ### (ii) Show that \( (A + 2B)' = A' + 2B' \) **Step 1: Calculate \( 2B \)** \[ 2B = 2 \cdot \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \] **Step 2: Calculate \( A + 2B \)** \[ A + 2B = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix} + \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} = \begin{pmatrix} 2 + (-2) & 8 + 6 \\ -7 + 4 & 3 + (-8) \end{pmatrix} = \begin{pmatrix} 0 & 14 \\ -3 & -5 \end{pmatrix} \] **Step 3: Calculate \( (A + 2B)' \)** \[ (A + 2B)' = \begin{pmatrix} 0 & 14 \\ -3 & -5 \end{pmatrix}' = \begin{pmatrix} 0 & -3 \\ 14 & -5 \end{pmatrix} \] **Step 4: Calculate \( A' \)** \[ A' = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix}' = \begin{pmatrix} 2 & -7 \\ 8 & 3 \end{pmatrix} \] **Step 5: Calculate \( 2B' \)** \[ 2B' = 2 \cdot \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 6 & -8 \end{pmatrix} \] **Step 6: Calculate \( A' + 2B' \)** \[ A' + 2B' = \begin{pmatrix} 2 & -7 \\ 8 & 3 \end{pmatrix} + \begin{pmatrix} -2 & 4 \\ 6 & -8 \end{pmatrix} = \begin{pmatrix} 2 + (-2) & -7 + 4 \\ 8 + 6 & 3 + (-8) \end{pmatrix} = \begin{pmatrix} 0 & -3 \\ 14 & -5 \end{pmatrix} \] **Step 7: Compare \( (A + 2B)' \) and \( A' + 2B' \)** Since \( (A + 2B)' = A' + 2B' \), the second statement is correct. ### (iii) Show that \( (AB)' = B'A' \) **Step 1: Calculate \( AB \)** \[ AB = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 2 \cdot (-1) + 8 \cdot 2 & 2 \cdot 3 + 8 \cdot (-4) \\ -7 \cdot (-1) + 3 \cdot 2 & -7 \cdot 3 + 3 \cdot (-4) \end{pmatrix} \] Calculating the elements: \[ AB = \begin{pmatrix} -2 + 16 & 6 - 32 \\ 7 + 6 & -21 - 12 \end{pmatrix} = \begin{pmatrix} 14 & -26 \\ 13 & -33 \end{pmatrix} \] **Step 2: Calculate \( (AB)' \)** \[ (AB)' = \begin{pmatrix} 14 & -26 \\ 13 & -33 \end{pmatrix}' = \begin{pmatrix} 14 & 13 \\ -26 & -33 \end{pmatrix} \] **Step 3: Calculate \( B' \) and \( A' \)** We already calculated: \[ B' = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}, \quad A' = \begin{pmatrix} 2 & -7 \\ 8 & 3 \end{pmatrix} \] **Step 4: Calculate \( B'A' \)** \[ B'A' = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} 2 & -7 \\ 8 & 3 \end{pmatrix} = \begin{pmatrix} -1 \cdot 2 + 2 \cdot 8 & -1 \cdot (-7) + 2 \cdot 3 \\ 3 \cdot 2 + (-4) \cdot 8 & 3 \cdot (-7) + (-4) \cdot 3 \end{pmatrix} \] Calculating the elements: \[ B'A' = \begin{pmatrix} -2 + 16 & 7 + 6 \\ 6 - 32 & -21 - 12 \end{pmatrix} = \begin{pmatrix} 14 & 13 \\ -26 & -33 \end{pmatrix} \] **Step 5: Compare \( (AB)' \) and \( B'A' \)** Since \( (AB)' = B'A' \), the third statement is correct. ### Summary of Results: 1. \( (A + B)' \neq A + B' \) (Incorrect) 2. \( (A + 2B)' = A' + 2B' \) (Correct) 3. \( (AB)' = B'A' \) (Correct)

To solve the given problem, we will verify three statements involving the matrices \( A \) and \( B \). Given: \[ A = \begin{pmatrix} 2 & 8 \\ -7 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix} \] ### (i) Show that \( (A + B)' = A + B' \) **Step 1: Calculate \( A + B \)** ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A={:[(1,2,3),(3,2,1)]:},B={:[(1,-1,4),(2,3,1)]:} , verify that (i) (B')'=B , (ii) (A-B)'=A'-B' (iii) (A+B)'=A'+B' , (iv) (kA)'=kA', where k is any constant (v) (2A+3B)'=2A'+3B'

if A=[{:(0),(1),(2):}]and B=[3" "2" "1], then show that : (AB)'=B'A'

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'