Home
Class 12
MATHS
if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and...

`if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}],`then show that :
`(AB)'=B'A'`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \((AB)' = B'A'\), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 3 & 4 \\ -4 & 5 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 5 & -4 \\ 4 & -1 & 2 \end{pmatrix} \] ### Step 2: Calculate the product \(AB\) To find \(AB\), we will multiply matrix \(A\) by matrix \(B\). 1. **First Row, First Column**: \[ (1 \cdot 3) + (0 \cdot 2) + (-3 \cdot 4) = 3 + 0 - 12 = -9 \] 2. **First Row, Second Column**: \[ (1 \cdot 0) + (0 \cdot 5) + (-3 \cdot -1) = 0 + 0 + 3 = 3 \] 3. **First Row, Third Column**: \[ (1 \cdot -1) + (0 \cdot -4) + (-3 \cdot 2) = -1 + 0 - 6 = -7 \] 4. **Second Row, First Column**: \[ (2 \cdot 3) + (3 \cdot 2) + (4 \cdot 4) = 6 + 6 + 16 = 28 \] 5. **Second Row, Second Column**: \[ (2 \cdot 0) + (3 \cdot 5) + (4 \cdot -1) = 0 + 15 - 4 = 11 \] 6. **Second Row, Third Column**: \[ (2 \cdot -1) + (3 \cdot -4) + (4 \cdot 2) = -2 - 12 + 8 = -6 \] 7. **Third Row, First Column**: \[ (-4 \cdot 3) + (5 \cdot 2) + (-2 \cdot 4) = -12 + 10 - 8 = -10 \] 8. **Third Row, Second Column**: \[ (-4 \cdot 0) + (5 \cdot 5) + (-2 \cdot -1) = 0 + 25 + 2 = 27 \] 9. **Third Row, Third Column**: \[ (-4 \cdot -1) + (5 \cdot -4) + (-2 \cdot 2) = 4 - 20 - 4 = -20 \] Thus, the product \(AB\) is: \[ AB = \begin{pmatrix} -9 & 3 & -7 \\ 28 & 11 & -6 \\ -10 & 27 & -20 \end{pmatrix} \] ### Step 3: Calculate the transpose of \(AB\) To find \((AB)'\), we will transpose the matrix \(AB\): \[ (AB)' = \begin{pmatrix} -9 & 28 & -10 \\ 3 & 11 & 27 \\ -7 & -6 & -20 \end{pmatrix} \] ### Step 4: Calculate the transpose of B and A 1. **Transpose of B**: \[ B' = \begin{pmatrix} 3 & 2 & 4 \\ 0 & 5 & -1 \\ -1 & -4 & 2 \end{pmatrix} \] 2. **Transpose of A**: \[ A' = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 3 & 5 \\ -3 & 4 & -2 \end{pmatrix} \] ### Step 5: Calculate the product \(B'A'\) Now we will multiply \(B'\) and \(A'\): 1. **First Row, First Column**: \[ (3 \cdot 1) + (2 \cdot 0) + (4 \cdot -3) = 3 + 0 - 12 = -9 \] 2. **First Row, Second Column**: \[ (3 \cdot 2) + (2 \cdot 3) + (4 \cdot 4) = 6 + 6 + 16 = 28 \] 3. **First Row, Third Column**: \[ (3 \cdot -4) + (2 \cdot 5) + (4 \cdot -2) = -12 + 10 - 8 = -10 \] 4. **Second Row, First Column**: \[ (0 \cdot 1) + (5 \cdot 0) + (-1 \cdot -3) = 0 + 0 + 3 = 3 \] 5. **Second Row, Second Column**: \[ (0 \cdot 2) + (5 \cdot 3) + (-1 \cdot 4) = 0 + 15 - 4 = 11 \] 6. **Second Row, Third Column**: \[ (0 \cdot -4) + (5 \cdot 5) + (-1 \cdot -2) = 0 + 25 + 2 = 27 \] 7. **Third Row, First Column**: \[ (-1 \cdot 1) + (-4 \cdot 0) + (2 \cdot -3) = -1 + 0 - 6 = -7 \] 8. **Third Row, Second Column**: \[ (-1 \cdot 2) + (-4 \cdot 3) + (2 \cdot 4) = -2 - 12 + 8 = -6 \] 9. **Third Row, Third Column**: \[ (-1 \cdot -4) + (-4 \cdot 5) + (2 \cdot -2) = 4 - 20 - 4 = -20 \] Thus, the product \(B'A'\) is: \[ B'A' = \begin{pmatrix} -9 & 28 & -10 \\ 3 & 11 & 27 \\ -7 & -6 & -20 \end{pmatrix} \] ### Step 6: Compare \((AB)'\) and \(B'A'\) We have: \[ (AB)' = \begin{pmatrix} -9 & 28 & -10 \\ 3 & 11 & 27 \\ -7 & -6 & -20 \end{pmatrix} \] \[ B'A' = \begin{pmatrix} -9 & 28 & -10 \\ 3 & 11 & 27 \\ -7 & -6 & -20 \end{pmatrix} \] Since \((AB)' = B'A'\), we have shown that the statement is true.

To show that \((AB)' = B'A'\), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 3 & 4 \\ -4 & 5 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 5 & -4 \\ 4 & -1 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}], then show that AB=BA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0