Home
Class 12
MATHS
if A=[{:(0),(1),(2):}]and B=[3" "2" "1],...

`if A=[{:(0),(1),(2):}]and B=[3" "2" "1],`then show that :
`(AB)'=B'A'`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \((AB)' = B'A'\) for the given matrices \(A\) and \(B\), we will first define the matrices and then perform the necessary calculations step by step. Given: \[ A = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \] ### Step 1: Calculate the product \(AB\) To calculate \(AB\), we multiply matrix \(A\) (which is a \(3 \times 1\) matrix) with matrix \(B\) (which is a \(1 \times 3\) matrix): \[ AB = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \] Using the rules of matrix multiplication, we calculate: \[ AB = \begin{pmatrix} 0 \cdot 3 & 0 \cdot 2 & 0 \cdot 1 \\ 1 \cdot 3 & 1 \cdot 2 & 1 \cdot 1 \\ 2 \cdot 3 & 2 \cdot 2 & 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 2 & 1 \\ 6 & 4 & 2 \end{pmatrix} \] ### Step 2: Calculate the transpose \((AB)'\) Now, we need to find the transpose of the resulting matrix \(AB\): \[ (AB)' = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 2 & 1 \\ 6 & 4 & 2 \end{pmatrix}' = \begin{pmatrix} 0 & 3 & 6 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] ### Step 3: Calculate the transpose of \(B\) and \(A\) Next, we calculate the transposes of \(B\) and \(A\): \[ B' = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad A' = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \] ### Step 4: Calculate the product \(B'A'\) Now, we multiply \(B'\) and \(A'\): \[ B'A' = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \] Calculating this product: \[ B'A' = \begin{pmatrix} 3 \cdot 0 & 3 \cdot 1 & 3 \cdot 2 \\ 2 \cdot 0 & 2 \cdot 1 & 2 \cdot 2 \\ 1 \cdot 0 & 1 \cdot 1 & 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 6 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] ### Step 5: Conclusion Now we compare the two results: \[ (AB)' = \begin{pmatrix} 0 & 3 & 6 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad B'A' = \begin{pmatrix} 0 & 3 & 6 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] Since \((AB)' = B'A'\), we have shown that: \[ (AB)' = B'A' \]

To prove that \((AB)' = B'A'\) for the given matrices \(A\) and \(B\), we will first define the matrices and then perform the necessary calculations step by step. Given: \[ A = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \] ### Step 1: Calculate the product \(AB\) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}], then show that (AB)'=B'A'

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

if A=[{:(2,8),(-7,3):}]and B=[{:(-1,3),(2,-4):}] , then show that : (i) (A+B)'=A+B' (ii) (A+2B)'=A'+2B' (iii) (AB)'=B'A'

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'