Home
Class 12
MATHS
if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B...

`if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}],`then show that : `(i) (A+B)'=A'+B'``(ii) (A+4B)'=A'+4B'`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to show two properties of matrix transposition involving matrices A and B. Let's go through each part step by step. ### Given Matrices: Let \[ A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 4 & 1 & 5 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 5 \\ 4 & 1 & 3 \end{pmatrix} \] ### Part (i): Show that \( (A + B)' = A' + B' \) **Step 1: Calculate \( A + B \)** To find \( A + B \), we add the corresponding elements of matrices A and B. \[ A + B = \begin{pmatrix} 2 + 1 & 1 - 1 & 3 + 2 \\ 1 + 2 & -1 + 1 & 2 + 5 \\ 4 + 4 & 1 + 1 & 5 + 3 \end{pmatrix} \] Calculating each element: \[ A + B = \begin{pmatrix} 3 & 0 & 5 \\ 3 & 0 & 7 \\ 8 & 2 & 8 \end{pmatrix} \] **Step 2: Calculate \( (A + B)' \)** Now we find the transpose of \( A + B \): \[ (A + B)' = \begin{pmatrix} 3 & 3 & 8 \\ 0 & 0 & 2 \\ 5 & 7 & 8 \end{pmatrix} \] **Step 3: Calculate \( A' \) and \( B' \)** Now we calculate the transposes of A and B individually. \[ A' = \begin{pmatrix} 2 & 1 & 4 \\ 1 & -1 & 1 \\ 3 & 2 & 5 \end{pmatrix} \] \[ B' = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 1 & 1 \\ 2 & 5 & 3 \end{pmatrix} \] **Step 4: Calculate \( A' + B' \)** Now we add \( A' \) and \( B' \): \[ A' + B' = \begin{pmatrix} 2 + 1 & 1 + 2 & 4 + 4 \\ 1 - 1 & -1 + 1 & 1 + 1 \\ 3 + 2 & 2 + 5 & 5 + 3 \end{pmatrix} \] Calculating each element: \[ A' + B' = \begin{pmatrix} 3 & 3 & 8 \\ 0 & 0 & 2 \\ 5 & 7 & 8 \end{pmatrix} \] **Step 5: Compare \( (A + B)' \) and \( A' + B' \)** We see that: \[ (A + B)' = \begin{pmatrix} 3 & 3 & 8 \\ 0 & 0 & 2 \\ 5 & 7 & 8 \end{pmatrix} = A' + B' \] Thus, we have shown that \( (A + B)' = A' + B' \). ### Part (ii): Show that \( (A + 4B)' = A' + 4B' \) **Step 1: Calculate \( 4B \)** First, we multiply matrix B by 4: \[ 4B = 4 \times \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 5 \\ 4 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -4 & 8 \\ 8 & 4 & 20 \\ 16 & 4 & 12 \end{pmatrix} \] **Step 2: Calculate \( A + 4B \)** Now we add A and \( 4B \): \[ A + 4B = \begin{pmatrix} 2 + 4 & 1 - 4 & 3 + 8 \\ 1 + 8 & -1 + 4 & 2 + 20 \\ 4 + 16 & 1 + 4 & 5 + 12 \end{pmatrix} \] Calculating each element: \[ A + 4B = \begin{pmatrix} 6 & -3 & 11 \\ 9 & 3 & 22 \\ 20 & 5 & 17 \end{pmatrix} \] **Step 3: Calculate \( (A + 4B)' \)** Now we find the transpose of \( A + 4B \): \[ (A + 4B)' = \begin{pmatrix} 6 & 9 & 20 \\ -3 & 3 & 5 \\ 11 & 22 & 17 \end{pmatrix} \] **Step 4: Calculate \( 4B' \)** Now we calculate the transpose of B and then multiply by 4: \[ B' = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 1 & 1 \\ 2 & 5 & 3 \end{pmatrix} \] \[ 4B' = 4 \times \begin{pmatrix} 1 & 2 & 4 \\ -1 & 1 & 1 \\ 2 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 16 \\ -4 & 4 & 4 \\ 8 & 20 & 12 \end{pmatrix} \] **Step 5: Calculate \( A' + 4B' \)** Now we add \( A' \) and \( 4B' \): \[ A' + 4B' = \begin{pmatrix} 2 + 4 & 1 + 8 & 4 + 16 \\ 1 - 4 & -1 + 4 & 1 + 4 \\ 3 + 8 & 2 + 20 & 5 + 12 \end{pmatrix} \] Calculating each element: \[ A' + 4B' = \begin{pmatrix} 6 & 9 & 20 \\ -3 & 3 & 5 \\ 11 & 22 & 17 \end{pmatrix} \] **Step 6: Compare \( (A + 4B)' \) and \( A' + 4B' \)** We see that: \[ (A + 4B)' = \begin{pmatrix} 6 & 9 & 20 \\ -3 & 3 & 5 \\ 11 & 22 & 17 \end{pmatrix} = A' + 4B' \] Thus, we have shown that \( (A + 4B)' = A' + 4B' \). ### Final Conclusion: Both parts of the problem have been proven: 1. \( (A + B)' = A' + B' \) 2. \( (A + 4B)' = A' + 4B' \)

To solve the given problem, we need to show two properties of matrix transposition involving matrices A and B. Let's go through each part step by step. ### Given Matrices: Let \[ A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 4 & 1 & 5 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 5 \\ 4 & 1 & 3 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,