Home
Class 12
MATHS
express the following matrices as a su...

express the following matrices as a sum of symmetric and skew symmetric matrices :
`(i) [{:(3,-7),(4,2):}] `

Text Solution

AI Generated Solution

The correct Answer is:
To express the given matrix as a sum of symmetric and skew-symmetric matrices, we can follow these steps: ### Given Matrix: Let \( A = \begin{pmatrix} 3 & -7 \\ 4 & 2 \end{pmatrix} \) ### Step 1: Find the Transpose of Matrix A The transpose of a matrix is obtained by swapping its rows and columns. \[ A^T = \begin{pmatrix} 3 & 4 \\ -7 & 2 \end{pmatrix} \] ### Step 2: Calculate the Symmetric Matrix The symmetric part of the matrix can be calculated using the formula: \[ S = \frac{1}{2}(A + A^T) \] Substituting the values of \( A \) and \( A^T \): \[ S = \frac{1}{2} \left( \begin{pmatrix} 3 & -7 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} 3 & 4 \\ -7 & 2 \end{pmatrix} \right) \] Calculating the sum: \[ = \frac{1}{2} \begin{pmatrix} 3 + 3 & -7 + 4 \\ 4 - 7 & 2 + 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 & -3 \\ -3 & 4 \end{pmatrix} \] Now, multiplying by \( \frac{1}{2} \): \[ S = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & 2 \end{pmatrix} \] ### Step 3: Calculate the Skew-Symmetric Matrix The skew-symmetric part of the matrix can be calculated using the formula: \[ K = \frac{1}{2}(A - A^T) \] Substituting the values of \( A \) and \( A^T \): \[ K = \frac{1}{2} \left( \begin{pmatrix} 3 & -7 \\ 4 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 4 \\ -7 & 2 \end{pmatrix} \right) \] Calculating the difference: \[ = \frac{1}{2} \begin{pmatrix} 3 - 3 & -7 - 4 \\ 4 + 7 & 2 - 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -11 \\ 11 & 0 \end{pmatrix} \] Now, multiplying by \( \frac{1}{2} \): \[ K = \begin{pmatrix} 0 & -\frac{11}{2} \\ \frac{11}{2} & 0 \end{pmatrix} \] ### Step 4: Express A as the Sum of S and K Now we can express the original matrix \( A \) as the sum of the symmetric matrix \( S \) and the skew-symmetric matrix \( K \): \[ A = S + K \] Thus, we have: \[ A = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & 2 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{11}{2} \\ \frac{11}{2} & 0 \end{pmatrix} \] ### Final Result The original matrix \( A \) can be expressed as: \[ A = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & 2 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{11}{2} \\ \frac{11}{2} & 0 \end{pmatrix} \]

To express the given matrix as a sum of symmetric and skew-symmetric matrices, we can follow these steps: ### Given Matrix: Let \( A = \begin{pmatrix} 3 & -7 \\ 4 & 2 \end{pmatrix} \) ### Step 1: Find the Transpose of Matrix A The transpose of a matrix is obtained by swapping its rows and columns. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Express the following matrix as a sum of symmetric and skew-symmetric matrices. [(1,3,5),(-6,8,3),(-4,6,5)]

Express the following matrices as the sum of a symmetric and a skew symmetric matrix:(i) [[3, 5],[ 1,-1]] (ii) [[6,-2, 2],[-2, 3,-1],[ 2,-1, 3]] (iii) [[3, 3,-1],[-2,-2, 1],[ 4, 5, 2]] (iv) [[1 ,5],[-1, 2]]

Expressing the following matrices as the sum of a symmetric and skew symmetric matrix : [[1,2,4],[6,8,1],[3,5,7]]

Expressing the following matrices as the sum of a symmetric and skew symmetric matrix : [[2,-2,-4],[-1,3,4],[1,-2,-3]]

Express the following matrix as the sum of a symmetric and skew symmetric matrix, and verify your result: [[3,-2,-4],[3,-2,-5],[-1,1,2]]

Express A as the sum of a symmetric and a skew-symmetric matrix, where A=[(3,5),(-1,2)]

Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and skew-symmetric matrix.

Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a skew-symmetric matrix.

Express the matrix A=[[3,-4], [1,-1]] as the sum of a symmetric and a skew-symmetric matrix.

If matrix A=[{:(1,-4),(3,0):}] is express as a sum of symmetric and skew symmetric matrices as [{:(1,x),(-(1)/(2),0):}]+[{:(0,-(7)/(2)),(y,0):}] then x+y=?