Home
Class 12
MATHS
If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1...

If `f(x)=x^2-5x+6.` Find `f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)]`.

A

`[{:(1,-1,-3),(-1,1,10),(-5,4,4):}]`

B

`[{:(1,-1,-3),(-1,-1,-10),(-5,-4,-4):}]`

C

`[{:(1,-1,-3),(-1,-1,-10),(-5,4,4):}]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(A) \) where \( f(x) = x^2 - 5x + 6 \) and \( A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Identify the Function**: We have the function \( f(x) = x^2 - 5x + 6 \). 2. **Substitute the Matrix**: To find \( f(A) \), we substitute \( A \) into the function: \[ f(A) = A^2 - 5A + 6I \] where \( I \) is the identity matrix of the same order as \( A \) (which is \( 3 \times 3 \)). 3. **Calculate \( A^2 \)**: We need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] Performing the multiplication: - First row: - First column: \( 2 \cdot 2 + 0 \cdot 2 + 1 \cdot 1 = 4 + 0 + 1 = 5 \) - Second column: \( 2 \cdot 0 + 0 \cdot 1 + 1 \cdot (-1) = 0 + 0 - 1 = -1 \) - Third column: \( 2 \cdot 1 + 0 \cdot 3 + 1 \cdot 0 = 2 + 0 + 0 = 2 \) - Second row: - First column: \( 2 \cdot 2 + 1 \cdot 2 + 3 \cdot 1 = 4 + 2 + 3 = 9 \) - Second column: \( 2 \cdot 0 + 1 \cdot 1 + 3 \cdot (-1) = 0 + 1 - 3 = -2 \) - Third column: \( 2 \cdot 1 + 1 \cdot 3 + 3 \cdot 0 = 2 + 3 + 0 = 5 \) - Third row: - First column: \( 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot 1 = 2 - 2 + 0 = 0 \) - Second column: \( 1 \cdot 0 + (-1) \cdot 1 + 0 \cdot (-1) = 0 - 1 + 0 = -1 \) - Third column: \( 1 \cdot 1 + (-1) \cdot 3 + 0 \cdot 0 = 1 - 3 + 0 = -2 \) Thus, \[ A^2 = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} \] 4. **Calculate \( 5A \)**: Now we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{pmatrix} \] 5. **Calculate \( 6I \)**: The identity matrix \( I \) for \( 3 \times 3 \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Therefore, \[ 6I = 6 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] 6. **Combine the Results**: Now we substitute back into the equation: \[ f(A) = A^2 - 5A + 6I \] \[ f(A) = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} - \begin{pmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] Performing the subtraction and addition: - First row: - \( 5 - 10 + 6 = 1 \) - \( -1 - 0 + 0 = -1 \) - \( 2 - 5 + 0 = -3 \) - Second row: - \( 9 - 10 + 0 = -1 \) - \( -2 - 5 + 6 = -1 \) - \( 5 - 15 + 0 = -10 \) - Third row: - \( 0 - 5 + 0 = -5 \) - \( -1 + 5 + 0 = 4 \) - \( -2 - 0 + 6 = 4 \) Thus, we get: \[ f(A) = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \] ### Final Answer: \[ f(A) = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \]

To solve the problem, we need to evaluate the function \( f(A) \) where \( f(x) = x^2 - 5x + 6 \) and \( A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Identify the Function**: We have the function \( f(x) = x^2 - 5x + 6 \). 2. **Substitute the Matrix**: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^2-5x+6 then find f(A) when A=[[2,0,1] , [2,1,3] , [1, -1, 0]]

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

If f(x)=x^2-2x , find f(A), where A=[(0, 1, 2),( 4 ,5, 0 ),(0, 2 ,3)] .

If f(x)=x^2-5x+ 7 and A=[(3,1),(-1,2)]. Find f(A)

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

A function f is defined by f(x) = x^(2) + 1 . Find f(0), f(5), f(10).

If a function f: R->R be defined by f(x)={3x-2,\ x 0 Find: f(1) ,\ f(-1),\ f(0),\ f(2)dot

If f(x)={{:(1+x",",-1lexlt0),(x^(2)-1",",0ltxlt2),(2x",",2lex):} Find f(3),f(-2),f(0),f((1)/(2))f(2-h),f(-1+h) , where hgt0 is very small.

If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)