Home
Class 12
MATHS
if A= [{:(costheta,sintheta),(-sintheta,...

`if A= [{:(costheta,sintheta),(-sintheta,costheta):}],` then `A A^T`=?`

A

`[{:(1,0),(0,1):}]`

B

`[{:(0,1),(1,0):}]`

C

`[{:(1,0),(0,-1):}]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A A^T \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \). ### Step-by-Step Solution: 1. **Find the Transpose of Matrix A**: \[ A^T = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] **Hint**: To find the transpose of a matrix, swap its rows and columns. 2. **Multiply A by A^T**: \[ A A^T = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] **Hint**: When multiplying two matrices, the element in the resulting matrix at position (i, j) is the dot product of the i-th row of the first matrix and the j-th column of the second matrix. 3. **Calculate Each Element of the Resulting Matrix**: - First row, first column: \[ \cos \theta \cdot \cos \theta + \sin \theta \cdot \sin \theta = \cos^2 \theta + \sin^2 \theta = 1 \] - First row, second column: \[ \cos \theta \cdot (-\sin \theta) + \sin \theta \cdot \cos \theta = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0 \] - Second row, first column: \[ -\sin \theta \cdot \cos \theta + \cos \theta \cdot \sin \theta = -\sin \theta \cos \theta + \cos \theta \sin \theta = 0 \] - Second row, second column: \[ -\sin \theta \cdot (-\sin \theta) + \cos \theta \cdot \cos \theta = \sin^2 \theta + \cos^2 \theta = 1 \] 4. **Combine the Results**: \[ A A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 5. **Conclusion**: The product \( A A^T \) is the identity matrix of order 2: \[ A A^T = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Answer: \[ A A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

To solve the problem, we need to calculate \( A A^T \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \). ### Step-by-Step Solution: 1. **Find the Transpose of Matrix A**: \[ A^T = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l is true for

If A = [(costheta,-sintheta),(sintheta,costheta)] , then the matrix A^(-50) , when theta = (pi)/(12) , is equal to

If A=[(costheta,sintheta),(-sintheta,costheta)] , then find the value of |A| .

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

If A=[(costheta,-sintheta),(sintheta,costheta)], then find the values of theta satisfying the equation A^T+A=I_2 .

If for the matrix A=[(costheta, 2sintheta),(sintheta,costheta)],A^(-1)=A^(T) then number of possible value(s) of theta in [0, 2pi] is :

Choose the correct answer from the following : The value of |{:(-costheta,sintheta),(-sintheta,-costheta):}| is:

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.