Home
Class 12
MATHS
Construst a 2xx2 matrix ,A=[a(ij)], who...

Construst a `2xx2` matrix ,A=[`a_(ij)`], whose elements are given by :
`(i) a_(ij)=((i+j)^(2))/(2)(ii)a_(ij)=(i)/(j)`
`(iii) a_(ij)=((i+2j)^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct a \(2 \times 2\) matrix \(A = [a_{ij}]\) based on the given formulas, we will evaluate each element of the matrix according to the specified rules. ### Step 1: Define the Matrix Structure The matrix \(A\) will have the following structure: \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \] ### Step 2: Calculate Elements Using the First Formula The first formula is given by: \[ a_{ij} = \frac{(i + j)^2}{2} \] - **Calculate \(a_{11}\)**: \[ a_{11} = \frac{(1 + 1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2 \] - **Calculate \(a_{12}\)**: \[ a_{12} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} \] - **Calculate \(a_{21}\)**: \[ a_{21} = \frac{(2 + 1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} \] - **Calculate \(a_{22}\)**: \[ a_{22} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] Now, substituting these values into the matrix \(A\): \[ A = \begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix} \] ### Step 3: Calculate Elements Using the Second Formula The second formula is given by: \[ a_{ij} = \frac{i}{j} \] - **Calculate \(a_{11}\)**: \[ a_{11} = \frac{1}{1} = 1 \] - **Calculate \(a_{12}\)**: \[ a_{12} = \frac{1}{2} = \frac{1}{2} \] - **Calculate \(a_{21}\)**: \[ a_{21} = \frac{2}{1} = 2 \] - **Calculate \(a_{22}\)**: \[ a_{22} = \frac{2}{2} = 1 \] Now, substituting these values into the matrix \(A\): \[ A = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \] ### Step 4: Calculate Elements Using the Third Formula The third formula is given by: \[ a_{ij} = \frac{(i + 2j)^2}{2} \] - **Calculate \(a_{11}\)**: \[ a_{11} = \frac{(1 + 2 \cdot 1)^2}{2} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} \] - **Calculate \(a_{12}\)**: \[ a_{12} = \frac{(1 + 2 \cdot 2)^2}{2} = \frac{(1 + 4)^2}{2} = \frac{5^2}{2} = \frac{25}{2} \] - **Calculate \(a_{21}\)**: \[ a_{21} = \frac{(2 + 2 \cdot 1)^2}{2} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] - **Calculate \(a_{22}\)**: \[ a_{22} = \frac{(2 + 2 \cdot 2)^2}{2} = \frac{(2 + 4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18 \] Now, substituting these values into the matrix \(A\): \[ A = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \] ### Summary of the Matrices 1. From the first formula: \[ A = \begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix} \] 2. From the second formula: \[ A = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \] 3. From the third formula: \[ A = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \]

To construct a \(2 \times 2\) matrix \(A = [a_{ij}]\) based on the given formulas, we will evaluate each element of the matrix according to the specified rules. ### Step 1: Define the Matrix Structure The matrix \(A\) will have the following structure: \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Construct a 2 xx2 matrix, A =[a_(i j)] , whose elements are given by:(i) a_(i j)=((i+j)^2)/2 (ii) a_(i j)=i/j (iii) a_(i j)=((i+2j)^2)/2

Construct a 2xx2 matrix A=[a_(i j)] whose elements are given by a_(i j)=(i+j)^2 .

Construct a 2xx2 matrix A=[a_(i j)] whose elements a_(i j) are given by: (i) a_(i j)=((2i+j)^2)/2 (ii) a_(i j)=(|2i-3j|)/2 (iii) a_(i j)=(|-3i+j|)/2

Construct a 2xx2 matrix A=[a_(i j)] whose elements a_(i j) are given by: a_(i j)=i+j

Construct a 2xx2 matrix A=[a_(i j)] whose elements a_(i j) are given by: (i) a_(i j)=e^(2i x)sinx j

Construct a 3xx4 matrix A=[a_(i j)] whose elements are given by (i) a_(i j)=i+j (ii) a_(i j)=i-j

Construct a 3xx4 matrix A=[a_(i j)] whose elements a_(i j) are given by: ) a_(i j)=2i

Construct a 2xx3 matrix A=[a_(ij)] , whose elements are given by a_(ij) =(1)/(2)|2i-3j| .

Construct a 2xx2 matrix A=[a_(i j)] whose elements a_(i j) are given by: (i) ((i+j)^2)/2 (ii) a_(i j)=((i-j)^2)/2 (iii) a_(i j)=((i-2j)^2)/2

Construct a 2xx2 matrix A=[a_(i j)] whose elements are given by a_(i j)=((i+2j)^2)/2 .