Home
Class 12
MATHS
find the values of x,y and zfrom the fol...

find the values of x,y and zfrom the following equations :
`(i) [{:(4,3),(x,5):}]=[{:(y,z),(1,5):}]`
`(ii) [{:(x+y,2),(5+z,xy):}]=[{:(6,2),(5,8):}]`
`(iii) [{:(x+y+z),(x+z),(y+z):}]=[{:(9),(5),(7):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the values of \(x\), \(y\), and \(z\) from the given equations, we will analyze each equation step by step. ### Given Equations: 1. \(\begin{pmatrix} 4 & 3 \\ x & 5 \end{pmatrix} = \begin{pmatrix} y & z \\ 1 & 5 \end{pmatrix}\) 2. \(\begin{pmatrix} x+y & 2 \\ 5+z & xy \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 5 & 8 \end{pmatrix}\) 3. \(\begin{pmatrix} x+y+z & x+z & y+z \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 7 \end{pmatrix}\) ### Step 1: Solve the First Equation From the first equation, we equate the corresponding elements of the matrices: - \(4 = y\) - \(3 = z\) - \(x = 1\) Thus, we have: - \(y = 4\) - \(z = 3\) - \(x = 1\) ### Step 2: Solve the Second Equation Using the values of \(x\) and \(y\) from Step 1, we substitute \(x = 1\) and \(y = 4\) into the second equation: \[ \begin{pmatrix} 1 + 4 & 2 \\ 5 + z & 1 \cdot 4 \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 5 & 8 \end{pmatrix} \] This gives us: - \(1 + 4 = 6\) (which is correct) - \(2 = 2\) (which is correct) - \(5 + z = 5\) implies \(z = 0\) (which contradicts our earlier value of \(z\)) - \(1 \cdot 4 = 8\) implies \(4 = 8\) (which is incorrect) Since we have a contradiction, we need to re-evaluate our values of \(x\), \(y\), and \(z\). ### Step 3: Solve the Third Equation Now, let's analyze the third equation: \[ \begin{pmatrix} x+y+z & x+z & y+z \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 7 \end{pmatrix} \] From this, we get the following equations: 1. \(x + y + z = 9\) 2. \(x + z = 5\) 3. \(y + z = 7\) ### Step 4: Substitute and Solve From the second equation, we can express \(x\) in terms of \(z\): \[ x = 5 - z \] Now substitute \(x\) into the first equation: \[ (5 - z) + y + z = 9 \] This simplifies to: \[ 5 + y = 9 \implies y = 4 \] Now, substitute \(y\) into the third equation: \[ 4 + z = 7 \implies z = 3 \] Finally, substitute \(z\) back into the expression for \(x\): \[ x = 5 - 3 = 2 \] ### Final Values Thus, the values are: - \(x = 2\) - \(y = 4\) - \(z = 3\) ### Summary of the Solution: - \(x = 2\) - \(y = 4\) - \(z = 3\)

To solve for the values of \(x\), \(y\), and \(z\) from the given equations, we will analyze each equation step by step. ### Given Equations: 1. \(\begin{pmatrix} 4 & 3 \\ x & 5 \end{pmatrix} = \begin{pmatrix} y & z \\ 1 & 5 \end{pmatrix}\) 2. \(\begin{pmatrix} x+y & 2 \\ 5+z & xy \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 5 & 8 \end{pmatrix}\) 3. \(\begin{pmatrix} x+y+z & x+z & y+z \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 7 \end{pmatrix}\) ### Step 1: Solve the First Equation ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find x,y,z from the following equation: [[4,3],[x,5]] = [[y, z], [1,5]]

Find the values of x, y and z from the following equations:(i) [[4, 3],[x,5]]=[[y, z],[1, 5]] (ii) [[x+y,3],[ 5+z, x y]]=[[6, 3],[ 5 ,8]] (iii) [[x+y+z],[ x+z],[ y+z]]=[[9],[ 5],[ 7]]

Write the values of x,y and z from the following equation: [[x+y+z],[ x+z],[ y+z]]=[[9], [5], [7]]

Write the values of x-y+z from the following equation: [[x+y+z], [x+z ],[y+z]]=[[9],[5],[ 7]]

Find x,y,z from the following equation: [[x+y,2],[5+z,xy]]=[[6,2],[5,8]]

Solve the system of equations in x,y and z satisfying the following equations x+[y]+{z}=3.1, y+[z]+{x}=4.3 and z+[x]+{y}=5.4

Using matrices solve the following system of linear equations: {(2x+3y+10z=4),(4x-6y+5z=1),(6x+9y-20z=2):}.

If [(x-y ,z),(2x-y,omega)]=[(-1 ,4),( 0 ,5)] , find x ,\ y ,\ z ,\ omega .

Using matrices solve the following system of equations : 2x-3y+5z=11 3x+2y-4z=-5 x+y-2z=-3