Home
Class 12
MATHS
if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and...

`if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}],`then verify that `(I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the given statements about matrices \( A \) and \( B \), we will follow these steps: ### Given: \[ A = \begin{pmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A + B \) To find \( A + B \), we add the corresponding elements of matrices \( A \) and \( B \). \[ A + B = \begin{pmatrix} -1 + (-4) & 2 + 1 & 3 + (-5) \\ 5 + 1 & 7 + 2 & 9 + 0 \\ -2 + 1 & 1 + 3 & 1 + 1 \end{pmatrix} \] Calculating each element: \[ A + B = \begin{pmatrix} -5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2 \end{pmatrix} \] ### Step 2: Calculate \( (A + B)' \) (Transpose of \( A + B \)) To find the transpose, we swap rows and columns. \[ (A + B)' = \begin{pmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{pmatrix} \] ### Step 3: Calculate \( A' \) (Transpose of \( A \)) \[ A' = \begin{pmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \end{pmatrix} \] ### Step 4: Calculate \( B' \) (Transpose of \( B \)) \[ B' = \begin{pmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \end{pmatrix} \] ### Step 5: Calculate \( A' + B' \) Now we add the transposed matrices \( A' \) and \( B' \). \[ A' + B' = \begin{pmatrix} -1 + (-4) & 5 + 1 & -2 + 1 \\ 2 + 1 & 7 + 2 & 1 + 3 \\ 3 + (-5) & 9 + 0 & 1 + 1 \end{pmatrix} \] Calculating each element: \[ A' + B' = \begin{pmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{pmatrix} \] ### Step 6: Verify \( (A + B)' = A' + B' \) Now we compare \( (A + B)' \) and \( A' + B' \): \[ (A + B)' = \begin{pmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{pmatrix} \] \[ A' + B' = \begin{pmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{pmatrix} \] Since both matrices are equal, we have verified that: \[ (A + B)' = A' + B' \] ### Step 7: Calculate \( A - B \) Now we calculate \( A - B \). \[ A - B = \begin{pmatrix} -1 - (-4) & 2 - 1 & 3 - (-5) \\ 5 - 1 & 7 - 2 & 9 - 0 \\ -2 - 1 & 1 - 3 & 1 - 1 \end{pmatrix} \] Calculating each element: \[ A - B = \begin{pmatrix} 3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0 \end{pmatrix} \] ### Step 8: Calculate \( (A - B)' \) (Transpose of \( A - B \)) \[ (A - B)' = \begin{pmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{pmatrix} \] ### Step 9: Calculate \( A' - B' \) Now we subtract \( B' \) from \( A' \). \[ A' - B' = \begin{pmatrix} -1 - (-4) & 5 - 1 & -2 - 1 \\ 2 - 1 & 7 - 2 & 1 - 3 \\ 3 - (-5) & 9 - 0 & 1 - 1 \end{pmatrix} \] Calculating each element: \[ A' - B' = \begin{pmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{pmatrix} \] ### Step 10: Verify \( (A - B)' = A' - B' \) Now we compare \( (A - B)' \) and \( A' - B' \): \[ (A - B)' = \begin{pmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{pmatrix} \] \[ A' - B' = \begin{pmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{pmatrix} \] Since both matrices are equal, we have verified that: \[ (A - B)' = A' - B' \] ### Conclusion Both parts of the verification are complete: 1. \( (A + B)' = A' + B' \) 2. \( (A - B)' = A' - B' \) ---

To verify the given statements about matrices \( A \) and \( B \), we will follow these steps: ### Given: \[ A = \begin{pmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A + B \) To find \( A + B \), we add the corresponding elements of matrices \( A \) and \( B \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

A={:[(1,2,3),(4,1,-1),(2,3,1)]:},B={:[(1,-1,1),(2,0,1),(1,1,1)]:} , verify (AB)'=B'A'.

If A={:[(1,2,3),(3,2,1)]:},B={:[(1,-1,4),(2,3,1)]:} , verify that (i) (B')'=B , (ii) (A-B)'=A'-B' (iii) (A+B)'=A'+B' , (iv) (kA)'=kA', where k is any constant (v) (2A+3B)'=2A'+3B'

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then verify that(i) (A+B)^(prime)=A^(prime)+B^(prime) (ii) (A-B)^(prime)=A^(prime)-B^(prime)

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to