Home
Class 12
MATHS
if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(...

`if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}],`then verify that `(i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the given statements, we will follow the steps outlined below. ### Given: - \( A' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \) ### Step 1: Find Matrix A Since \( A' \) is the transpose of matrix \( A \), we can find \( A \) by transposing \( A' \): \[ A = (A')' = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} \] ### Step 2: Find Matrix B' Now, we will find the transpose of matrix \( B \): \[ B' = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] ### Step 3: Verify (i) \( (A + B)' = A' + B' \) First, we need to find \( A + B \): \[ A + B = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 - 1 & -1 + 2 & 0 + 1 \\ 4 + 1 & 2 + 2 & 1 + 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{pmatrix} \] Now, we take the transpose of \( A + B \): \[ (A + B)' = \begin{pmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{pmatrix} \] Next, we calculate \( A' + B' \): \[ A' + B' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 - 1 & 4 + 1 \\ -1 + 2 & 2 + 2 \\ 0 + 1 & 1 + 3 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{pmatrix} \] Since \( (A + B)' = A' + B' \), the first part is verified. ### Step 4: Verify (ii) \( (A - B)' = A' - B' \) First, we need to find \( A - B \): \[ A - B = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 + 1 & -1 - 2 & 0 - 1 \\ 4 - 1 & 2 - 2 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 4 & -3 & -1 \\ 3 & 0 & -2 \end{pmatrix} \] Now, we take the transpose of \( A - B \): \[ (A - B)' = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] Next, we calculate \( A' - B' \): \[ A' - B' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 + 1 & 4 - 1 \\ -1 - 2 & 2 - 2 \\ 0 - 1 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] Since \( (A - B)' = A' - B' \), the second part is verified. ### Final Result Both parts are verified: 1. \( (A + B)' = A' + B' \) 2. \( (A - B)' = A' - B' \)

To verify the given statements, we will follow the steps outlined below. ### Given: - \( A' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \) ### Step 1: Find Matrix A Since \( A' \) is the transpose of matrix \( A \), we can find \( A \) by transposing \( A' \): ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A={:[(1,2,3),(3,2,1)]:},B={:[(1,-1,4),(2,3,1)]:} , verify that (i) (B')'=B , (ii) (A-B)'=A'-B' (iii) (A+B)'=A'+B' , (iv) (kA)'=kA', where k is any constant (v) (2A+3B)'=2A'+3B'

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B

If A={:[(1,4,2),(-1,2,3)]:}andB={:[(1,0,0),(0,-1,1)]:} , verify that (i) (A^('))^(')=A (ii) (kB)^(')=kB^(') (iii) (A+B)^(')=A^(')+B^(')

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,