Home
Class 12
MATHS
For the matrices A and B, verify that (A...

For the matrices A and B, verify that (AB)′=B′A′, where (i) `A=[{:(-1),(4),(3):}],` `B=[-1" " 2" " 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To verify that \((AB)′ = B′A′\) for the matrices \(A\) and \(B\), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \] ### Step 2: Calculate the product \(AB\) To find \(AB\), we multiply matrix \(A\) (which is \(3 \times 1\)) with matrix \(B\) (which is \(1 \times 3\)). The result will be a \(3 \times 3\) matrix. \[ AB = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} (-1)(-1) & (-1)(2) & (-1)(1) \\ (4)(-1) & (4)(2) & (4)(1) \\ (3)(-1) & (3)(2) & (3)(1) \end{bmatrix} \] Calculating the elements: \[ AB = \begin{bmatrix} 1 & -2 & -1 \\ -4 & 8 & 4 \\ -3 & 6 & 3 \end{bmatrix} \] ### Step 3: Calculate the transpose of \(AB\) Now, we find \((AB)′\) by transposing the matrix \(AB\). \[ (AB)′ = \begin{bmatrix} 1 & -4 & -3 \\ -2 & 8 & 6 \\ -1 & 4 & 3 \end{bmatrix} \] ### Step 4: Calculate \(B′\) and \(A′\) Now, we need to find \(B′\) (the transpose of \(B\)) and \(A′\) (the transpose of \(A\)). \[ B′ = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad A′ = \begin{bmatrix} -1 & 4 & 3 \end{bmatrix} \] ### Step 5: Calculate the product \(B′A′\) Now, we multiply \(B′\) (which is \(3 \times 1\)) with \(A′\) (which is \(1 \times 3\)). The result will also be a \(3 \times 3\) matrix. \[ B′A′ = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 4 & 3 \end{bmatrix} = \begin{bmatrix} (-1)(-1) & (-1)(4) & (-1)(3) \\ (2)(-1) & (2)(4) & (2)(3) \\ (1)(-1) & (1)(4) & (1)(3) \end{bmatrix} \] Calculating the elements: \[ B′A′ = \begin{bmatrix} 1 & -4 & -3 \\ -2 & 8 & 6 \\ -1 & 4 & 3 \end{bmatrix} \] ### Step 6: Compare \((AB)′\) and \(B′A′\) Now we compare the two results: \[ (AB)′ = \begin{bmatrix} 1 & -4 & -3 \\ -2 & 8 & 6 \\ -1 & 4 & 3 \end{bmatrix}, \quad B′A′ = \begin{bmatrix} 1 & -4 & -3 \\ -2 & 8 & 6 \\ -1 & 4 & 3 \end{bmatrix} \] Since both matrices are equal, we conclude that: \[ (AB)′ = B′A′ \] ### Conclusion Thus, we have verified that \((AB)′ = B′A′\). ---

To verify that \((AB)′ = B′A′\) for the matrices \(A\) and \(B\), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For two matrices A and B , verify that (A B)^T=B^T\ A^T , where A=[[1 ,3 ] , [2 ,4]] , B=[[1 , 4 ] , [ 2 ,5] ]

For 2 times 2 matrices A,B and I, if A+B=I and 2A-2B=I , then A equals 1) [[(1)/(4),0],[0,(1)/(4)]] 2) [[(1)/(2),0],[0,(1)/(2)]] 3) [[(3)/(4),0],[0,(3)/(4)]], 4) [[1,0],[0,1]]

Solve for matrics A and B , where 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

For the following pair of matrix verify that (A B)^(-1)=B^(-1)A^(-1) . A=[2 1 5 3] and B=[4 5 3 4]

Determine the matrices A and B where A + 2B = [(1, 2, 0), (6, -3, 3), (-5, 3, 1)] and 2A - B = [(2, -1, 5), (2, -1, 6), (0, 1, 2)]

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

If possible find the sum of the matrics A and B, where A=[{:( sqrt(3),1),(2,3):}]"and" B=[{:(x,y,z) ,(a,b,c):}]

For the matrices A and B , A=[[2 ,1 ,3 ] , [4 ,1 ,0 ]] , B=[[1 , -1] , [ 0, 2 ] , [ 5 , 0]] verify that (A B)^T=B^T\ A^T

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A(B+C)=A B+A C . A=[(1,-1), (0,2)] , B=[(-1,0),( 2,1)] and C=[(0,1),(1,-1)]