Home
Class 12
MATHS
If (i) A=[cosalphasinalpha-sinalphacosal...

If (i) `A=[cosalphasinalpha-sinalphacosalpha]` , then verify that `AprimeA" "=" "I` . (ii) `A=[sinalphacosalpha-cosalphasinalpha]` , then verify that `AprimeA" "=" "I` .

Text Solution

Verified by Experts

The correct Answer is:
N/a

` A=[{:(cosalpha ,sin alpha),(-sin alpha,cosalpha ):}],`
`implies A'[{:(cos alpha ,-sin alpha),(sinalpha ,cosalpha):}]`
`therefore A'A =[{:(cosalpha,-sinalpha),(sinalpha ,cos alpha ):}][{:(cos alpha, sinalpha),(-sinalpha , cos alpha ):}]`
`=[{:(cos ^(2)alpha +sin^(2)alpha ,sinalpha cos alpha -sin slpha cos alpha ),( sin alpha cos alpha -sinalpha cos alpha ,sin^(2) alpha +cos^(2)alpha):}]`
`=[{:(1,0),(0,1):}]=I` hence proved
`(ii) if A=[{:(sinalpha ,cosalpha),(-cos alpha,sinalpha ):}],`
`implies A'=[{:(sin alpha ,-cos alpha),(cos alpha , sinalpha ):}]`
`therefore A'A =[{:(sin alpha ,-cosalpha ),(cosalpha ,sin alpha ):}][{:(sin alpha ,cosalpha ),(-cos alpha , sin alpha ):}]`
`=[{:(sin^(2)alpha +cos^(2)alpha ,sinalpha cos alpha - sin alpha cos alpha ),( sin alpha cos alpha -sin alpha cos alpha ,cos^(2)alpha +sin^(2)alpha ):}]`
`=[{:(1,0),(0,1):}]=I` hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA = I .(ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA = I .

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T\ A=I_2 .

If A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , verify that A^T A=I_2

If A_alpha=[cosalphasinalpha-sinalphacosalpha] , then prove that (A_alpha)^n=[cos n\ alphasinn\ alpha-sinn\ alpha cos n\ alpha] for every positive integer n .

If A=(cosalpha-sinalpha0sinalphacosalpha0 0 0 1), find a d jdotA and verify that A(a d jdotA)=(a d jdotA)A=|A|I_3dot

If z=4 + 3i , then verify that |z|= |bar(z)|

If A=[(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),( 0, 0, 1)], find a d jdotA and verify that A(a d jdotA)=(a d jdotA)A=|A|I_3dot

If A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]] , find a d j\ A and verify that A(a d j\ A)=(a d j\ A)A=|A|I_3 .

Find the adjoint of the following matrices: [(cosalpha,sinalpha),(sinalpha,cosalpha)] (ii) [(1,tanalpha//2),(-tanalpha//2, 1)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

If z=4 + 3i , then verify that -|z| lt I m (z) le |z|