Home
Class 12
MATHS
(i) Show that the matrix A=[{:(1,-1,5),(...

(i) Show that the matrix `A=[{:(1,-1,5),(-1,2,1),(5,1,3):}]` is a symmetric matrix. (ii) Show that the matrix `A-[{:(0 ,1,-1),(-1, 2, 1),( 1,-1, 0):}]` is a skew symmetric matrix.

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A=[{:(1,-1,5),(-1,2,1),(5,1,3):}]`
`implies A'=[{:(1,-1,5),(-1,2,1),(5,1,3):}]=[{:(1,-1,5),(-1,2,1),(5,1,3):}]=A`
`implies ` A is symmetric matrix. Hence proved .
`(ii) A=[{:(0,1,-1),(-1,0,1),(1,-1,0):}]=[{:(0,-1,1),(1,0,-1),(-1,1,0):}]`
`=-[{:(0,1,-1),(+1,0,1),(1,-1,0):}]=A`
`implies ` A is skew symmetric matrix . hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If the matrix [{:(0,-1,3x),(1,y,-5),(-6,5,0):}] is skew- symmetric, then

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

show that the matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is involutory.

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

If the matrix A=((2,3),(4,5)) , then show that A-A^(T) is a skew-symmetric matrix.

If A=[[3,-4], [1,-1]] , show that A-A^T is a skew symmetric matrix.

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then the value of (a+b+c)^(2) is