Home
Class 12
MATHS
for the matrix A=[{:(1,5),(6,7):}], veri...

for the matrix `A=[{:(1,5),(6,7):}],` verify that :
(I) (A+A') is a symmetric matrix.
(ii) (A-A') is a skew symmetric matrix.

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A=[{:(1,5),(6,7):}]`
`implies A'=[{:(1,5),(6,7):}]=[{:(1,6),(5,7):}]`
(i) `A+A'=[{:(1,5),(6,7):}]+[{:(1,6),(5,7):}]=[{:(2,11),(11,14):}]`
`implies (A+A')'=[{:(2,11),(11,14):}]=[{:(2,11),(11,14):}]=A+A'`
`implies ` A"A' is a symmetric matrix . Hence proved
`(ii) A-A'=[{:(1,5),(6,7):}]-[{:(1,6),(5,7):}]=[{:(0,-1),(1,0):}]`
`implies (A-A')' =[{:(0,-1),(1,0):}]=[{:(0,1),(-1,0):}]`
` =- [{:(0,-1),(0,1):}]=-(A-A')`
`implies ` is a skew symmetric matrix .
Hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[1, 5],[ 6, 7]] , verify that.(i) (A+A^(prime)) is a symmetric matrix(ii) (A-A^(prime)) is a skew symmetric matrix

If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.

If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

If A is skew-symmetric matrix then A^(2) is a symmetric matrix.

If the matrix A=((2,3),(4,5)) , then show that A-A^(T) is a skew-symmetric matrix.

It A is a symmetric matrix, write whether A^T is symmetric or skew - symmetric matrix.

The inverse of an invertible symmetric matrix is a symmetric matrix.

For, a 3xx3 skew-symmetric matrix A, show that adj A is a symmetric matrix.

If A is a symmetric matrix, write whether A^T is symmetric or skew-symmetric.

If A is a symmetric matrix, write whether A^T is symmetric or skew-symmetric.