Home
Class 12
MATHS
Find 1/2(A+Aprime)and 1/2(A-Aprime), whe...

Find `1/2(A+Aprime)`and `1/2(A-Aprime)`, when `A=[0a b-a0c-b-c0]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A=[{:(0,a,b),(-a,0,c),(-b,-c,0):}].`
`implies A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]=[{:(0,-a,-b),(a,0,-c),(b,c,o):}]`
`therefore A+A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]=[{:(0,-a,-b),(a ,0,-c),(b,c,0):}]`
`=[{:(0,0,0),(0,0,0),(0,0,0):}]`
`implies (1)/(2)(A+A')=[{:(0,0,0),(0,0,0),(0,0,0):}]`
`and A-A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]-[{:(0,-a,-b),(a,0,-c),(b,c,0):}]`
`=[{:(0,2a,2b),(-2a,0,2C),(-2b,-2c,0):}]`
`implies(1)/(2)(A-A')=[{:(0,a,b),(-a,0,C),(-b,-c,0):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find 1/2(A+Aprime) and 1/2(A-Aprime) , when A=[[0,a, b],[-a,0,c],[-b,-c,0]]

For a gt b gt c gt 0 , if the distance between (1,1) and the point of intersection of the line ax+by-c=0 and bx+ay+c=0 is less than 2sqrt2 then, (A) a+b-cgt0 (B) a-b+clt0 (C) a-b+cgt0 (D) a+b-clt0

If A=[3sqrt(3)2 4 20] and B=[2-1 2 124] , verify that(i) (Aprime)prime=A (ii) (A+B)prime=Aprime+Bprime (iii) (k B)prime=k Bprime where k is any constant.

If A=[[0,a,b],[-a,0,c],[-b,-c,0]] , find 1/2 (A+A\') and 1/2 (A-A\')

For a reaction A +B → C, the experimental rate law is found to be R=k[A]^1[B]^(1/2) . Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03.

Find the value of a if [a-b2a+c2a-b3c+d]=[-1 5 0 13]

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

Two events A and B will be independent, if(A) A and B are mutually exclusive(B) P(Aprime ∩ Bprime)=[1-P(A)][1-P(B)] (C) P(A) = P(B) (D) P(A) + P(B) = 1

If A=[(a, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,0,c^-1)]

If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1/b + 1/c = 1/(a+b+c) , then (a+b) (b+c)(c+a) =