Home
Class 12
MATHS
If A=[[cosalpha, -sin alpha] , [sin alph...

If `A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]]` then `A+A'=I` then `alpha=`

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`Pi`

D

`(3pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

` A=[{:(cos alpha ,-sinalpha),(sin alpha ,cosalpha):}] `
`implies A'=[{:(cosalpha,sinalpha),(-sin alpha,cosalpha):}]`
Now , `A+A'=I`
`implies [{:(cosalpha ,-sinalpha),(sin alpha,cosalpha):}]+[{:(cosalpha,sin alpha ),(-sin alpha ,cos alpha ):}]=[{:(1,0),(0,1):}]`
`implies [{:(2cosalpha,0),(0,2cosalpha):}]=[{:(1,0),(0,1):}]`
`implies 2cos alpha=1`
`implies cos alpha =(1)/(2)`
`alpha=(pi)/(3)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[[cos alpha,-sin alpha],[sin alpha,cos alpha]], then for what value of alpha is A an identity matrix?

If A= [[cosalpha,sinalpha],[-sinalpha,cosalpha]] then show that A^2=[[cos2alpha,sin2alpha],[-sin2alpha,cos2alpha]]

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If A(cos alpha, sin alpha), B(sin alpha, -cos alpha), C(1,2) are the vertices of a triangle, then as alpha varies the locus of centroid of the DeltaABC is a circle whose radius is :

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

One side of a square makes an angle alpha with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are x(sin alpha+ cos alpha) =y (cosalpha-sinalpha) or x(cos alpha-sin alpha) + y (sin alpha + cos alpha) = a , where a is the length of the side of the square.