Home
Class 12
MATHS
Find the inverse of the following matric...

Find the inverse of the following matrices if exist :
(i) `|{:(5,-3),(2,2):}|`
(ii) `|{:(1,-3),(-1,2):}|`
(iii) `|{:(1,0,-1),(3,4,5),(0,-6,-7):}|`
(iv) `|{:(1,-3,3),(2,2,-4),(2,0,2):}|`
(v) `|{:(1,2,1),(1,-1,-2),(1,2,-1):}|`
(vi) `|{:(4,-2,-1),(1,1,-1),(-1,2,4):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrices, we will follow a systematic approach. The inverse of a matrix \( A \) exists if and only if the determinant of \( A \) is non-zero. The formula for the inverse of a \( 2 \times 2 \) matrix is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] For a \( 3 \times 3 \) matrix, the inverse can be found using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] where \( \text{adj}(A) \) is the adjoint of \( A \), which is the transpose of the cofactor matrix. ### (i) Matrix: \[ A = \begin{pmatrix} 5 & -3 \\ 2 & 2 \end{pmatrix} \] **Step 1: Calculate the determinant.** \[ \text{det}(A) = 5 \cdot 2 - (-3) \cdot 2 = 10 + 6 = 16 \] **Step 2: Check if the determinant is non-zero.** Since \( \text{det}(A) = 16 \neq 0 \), the inverse exists. **Step 3: Calculate the adjoint.** For a \( 2 \times 2 \) matrix, the adjoint is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -2 & 5 \end{pmatrix} \] **Step 4: Calculate the inverse.** \[ A^{-1} = \frac{1}{16} \begin{pmatrix} 2 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{8} & \frac{3}{16} \\ -\frac{1}{8} & \frac{5}{16} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Are the following matrices invertible ? (i) |{:(2,-3),(1,4):}| (ii) |{:(7,0),(3,1):}| (iii) |{:(1,-2,-3),(1,-3,-4),(1,-4,-5):}| (iv) |{:(2,3,-1),(0,1,4),(-5,0,-2):}| (v) |{:(0,1,2),(1,2,3),(3,1,1):}|

Find the inverse of the following matrices [{:(3,-1),(-4,2):}](ii)[{:(2,-6),(1,-2):}]

Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (ii) |{:(3,-4,5),(1,1,-2),(2,3,1):}| (iii) |{:(0,1,2),(-1,0,-3),(-2,3,0):}| (iv) |{:(2,-1,-2),(0,2,-1),(3,-5,0):}|

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Find the transpose of each of the following matrices:(i) [(5 , 1), (2 ,1) ] (ii) [(1 , -1), (2 ,3) ] (iii) [(-1 , 5, 6), (sqrt 3 ,5, 6), (2 , 3, -1)]

Find the inverse the matrix (if it exists) given in [(2, 1, 3),( 4,-1, 0),(-7, 2, 1)]

Find the area of the triangle whose vertices are given below : (i) (-3,-4), (-2,-7), (-1,-9) (ii) (3,8),(-4,2), (5,1) (iii) (2,1), (3,2), (-1, 4)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

Find the inverse the matrix (if it exists)given in [(1,-1, 2),( 0, 2,-3),( 3,-2, 4)]

Evaluate : if possible (i) [3,2] [{:(,2),(,0):}] (ii) [1 , -2] [{:(,-2,3),(,-1,4):}] (iii) [{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}] (iv) [{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}]