Home
Class 12
MATHS
If A=[{:(1,2,2),(2,1,2),(2,2,1):}], then...

If `A=[{:(1,2,2),(2,1,2),(2,2,1):}]`, then show that `A^(2)-4A-5I_(3)=0`. Hemce find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 4A - 5I_3 = 0 \) and then find \( A^{-1} \). ### Step 1: Define the matrix A Given the matrix: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row: - \( (1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2) = 1 + 4 + 4 = 9 \) - \( (1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1) = 2 + 4 + 2 = 8 \) - Second row: - \( (2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2) = 4 + 1 + 4 = 9 \) - \( (2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1) = 4 + 2 + 2 = 8 \) - Third row: - \( (2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2) = 2 + 4 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2) = 4 + 2 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1) = 4 + 4 + 1 = 9 \) Thus, we have: \[ A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} \] ### Step 3: Calculate \( 4A \) Now, we calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] ### Step 4: Calculate \( 5I_3 \) The identity matrix \( I_3 \) is: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 5I_3 = 5 \cdot I_3 = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 5: Calculate \( A^2 - 4A - 5I_3 \) Now we can substitute our results into the equation: \[ A^2 - 4A - 5I_3 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} - \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] Calculating this step-by-step: 1. First, subtract \( 4A \) from \( A^2 \): \[ \begin{pmatrix} 9 - 4 & 8 - 8 & 8 - 8 \\ 8 - 8 & 9 - 4 & 8 - 8 \\ 8 - 8 & 8 - 8 & 9 - 4 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] 2. Now subtract \( 5I_3 \): \[ \begin{pmatrix} 5 - 5 & 0 - 0 & 0 - 0 \\ 0 - 0 & 5 - 5 & 0 - 0 \\ 0 - 0 & 0 - 0 & 5 - 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Thus, we have shown that: \[ A^2 - 4A - 5I_3 = 0 \] ### Step 6: Finding \( A^{-1} \) From the equation \( A^2 - 4A - 5I_3 = 0 \), we can rearrange it to find \( A^{-1} \): \[ A^2 - 4A = 5I_3 \] Multiplying both sides by \( A^{-1} \): \[ A - 4I_3 = 5A^{-1} \] Thus, \[ A^{-1} = \frac{1}{5}(A - 4I_3) \] Substituting \( A \) and \( I_3 \): \[ A - 4I_3 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 - 4 & 2 & 2 \\ 2 & 1 - 4 & 2 \\ 2 & 2 & 1 - 4 \end{pmatrix} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \] Finally, we have: \[ A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \] ### Final Answer Thus, the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O .

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[(1,2),(2,1)] show that A^(2)-3I=2A

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .