Home
Class 12
MATHS
If A=|{:(1,4,5),(3,2,6),(0,1,0):}|, then...

If `A=|{:(1,4,5),(3,2,6),(0,1,0):}|`, then evaluate A. (adj. A).

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( A \cdot \text{adj}(A) \) for the matrix \[ A = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0 \end{pmatrix}, \] we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For our matrix \( A \): \[ \text{det}(A) = 1(2 \cdot 0 - 6 \cdot 1) - 4(3 \cdot 0 - 6 \cdot 0) + 5(3 \cdot 1 - 2 \cdot 0). \] Calculating this gives: \[ = 1(0 - 6) - 4(0) + 5(3) = -6 + 0 + 15 = 9. \] ### Step 2: Calculate the Cofactor Matrix of \( A \) The cofactor \( C_{ij} \) is calculated as \( (-1)^{i+j} \cdot M_{ij} \), where \( M_{ij} \) is the determinant of the \( 2 \times 2 \) matrix obtained by deleting the \( i \)-th row and \( j \)-th column. Calculating each cofactor: - \( C_{11} = \text{det} \begin{pmatrix} 2 & 6 \\ 1 & 0 \end{pmatrix} = (2 \cdot 0 - 6 \cdot 1) = -6 \) - \( C_{12} = -\text{det} \begin{pmatrix} 3 & 6 \\ 0 & 0 \end{pmatrix} = 0 \) - \( C_{13} = \text{det} \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} = (3 \cdot 1 - 2 \cdot 0) = 3 \) - \( C_{21} = -\text{det} \begin{pmatrix} 4 & 5 \\ 1 & 0 \end{pmatrix} = - (4 \cdot 0 - 5 \cdot 1) = 5 \) - \( C_{22} = \text{det} \begin{pmatrix} 1 & 5 \\ 0 & 0 \end{pmatrix} = 0 \) - \( C_{23} = -\text{det} \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} = - (1 \cdot 1 - 4 \cdot 0) = -1 \) - \( C_{31} = \text{det} \begin{pmatrix} 4 & 5 \\ 2 & 6 \end{pmatrix} = (4 \cdot 6 - 5 \cdot 2) = 24 - 10 = 14 \) - \( C_{32} = -\text{det} \begin{pmatrix} 1 & 5 \\ 3 & 6 \end{pmatrix} = - (1 \cdot 6 - 5 \cdot 3) = - (6 - 15) = 9 \) - \( C_{33} = \text{det} \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} = (1 \cdot 2 - 4 \cdot 3) = 2 - 12 = -10 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -6 & 0 & 3 \\ 5 & 0 & -1 \\ 14 & 9 & -10 \end{pmatrix}. \] ### Step 3: Calculate the Adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -6 & 5 & 14 \\ 0 & 0 & 9 \\ 3 & -1 & -10 \end{pmatrix}. \] ### Step 4: Calculate \( A \cdot \text{adj}(A) \) Now we multiply \( A \) and \( \text{adj}(A) \): \[ A \cdot \text{adj}(A) = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -6 & 5 & 14 \\ 0 & 0 & 9 \\ 3 & -1 & -10 \end{pmatrix}. \] Calculating each entry: 1. First row, first column: \( 1 \cdot (-6) + 4 \cdot 0 + 5 \cdot 3 = -6 + 0 + 15 = 9 \) 2. First row, second column: \( 1 \cdot 5 + 4 \cdot 0 + 5 \cdot (-1) = 5 + 0 - 5 = 0 \) 3. First row, third column: \( 1 \cdot 14 + 4 \cdot 9 + 5 \cdot (-10) = 14 + 36 - 50 = 0 \) 4. Second row, first column: \( 3 \cdot (-6) + 2 \cdot 0 + 6 \cdot 3 = -18 + 0 + 18 = 0 \) 5. Second row, second column: \( 3 \cdot 5 + 2 \cdot 0 + 6 \cdot (-1) = 15 + 0 - 6 = 9 \) 6. Second row, third column: \( 3 \cdot 14 + 2 \cdot 9 + 6 \cdot (-10) = 42 + 18 - 60 = 0 \) 7. Third row, first column: \( 0 \cdot (-6) + 1 \cdot 0 + 0 \cdot 3 = 0 + 0 + 0 = 0 \) 8. Third row, second column: \( 0 \cdot 5 + 1 \cdot 0 + 0 \cdot (-1) = 0 + 0 + 0 = 0 \) 9. Third row, third column: \( 0 \cdot 14 + 1 \cdot 9 + 0 \cdot (-10) = 0 + 9 + 0 = 9 \) Thus, we get: \[ A \cdot \text{adj}(A) = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = 9I, \] where \( I \) is the identity matrix. ### Final Result \[ A \cdot \text{adj}(A) = 9I. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,3,3),(,1,4,3),(,1,3,4):}] then verify that A adj A=|A| I. Also find A^(-1)

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

Let A=[{:(2, -1, 3), (4, 0, 2), (-3, 2, 6):}] , find det (adj A).

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If for a matrix A, absA=6and adj A= {:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=