Home
Class 12
MATHS
If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and ...

If `A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \((I - A)^{-1}\), where \(I\) is the identity matrix and \(A\) is given as: \[ A = \begin{pmatrix} 0 & -3 & 4 \\ 1 & 2 & 3 \\ 0 & 5 & 5 \end{pmatrix} \] we will follow these steps: ### Step 1: Define the Identity Matrix \(I\) The identity matrix \(I\) for a \(3 \times 3\) matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \(I - A\) Now we will subtract matrix \(A\) from \(I\): \[ I - A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & -3 & 4 \\ 1 & 2 & 3 \\ 0 & 5 & 5 \end{pmatrix} \] Performing the subtraction element-wise: \[ I - A = \begin{pmatrix} 1 - 0 & 0 - (-3) & 0 - 4 \\ 0 - 1 & 1 - 2 & 0 - 3 \\ 0 - 0 & 0 - 5 & 1 - 5 \end{pmatrix} = \begin{pmatrix} 1 & 3 & -4 \\ -1 & -1 & -3 \\ 0 & -5 & -4 \end{pmatrix} \] ### Step 3: Calculate the Determinant of \(I - A\) Let \(B = I - A\): \[ B = \begin{pmatrix} 1 & 3 & -4 \\ -1 & -1 & -3 \\ 0 & -5 & -4 \end{pmatrix} \] We will calculate the determinant of matrix \(B\): \[ \text{det}(B) = 1 \cdot \begin{vmatrix} -1 & -3 \\ -5 & -4 \end{vmatrix} - 3 \cdot \begin{vmatrix} -1 & -3 \\ 0 & -4 \end{vmatrix} + (-4) \cdot \begin{vmatrix} -1 & -1 \\ 0 & -5 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -1 & -3 \\ -5 & -4 \end{vmatrix} = (-1)(-4) - (-3)(-5) = 4 - 15 = -11\) 2. \(\begin{vmatrix} -1 & -3 \\ 0 & -4 \end{vmatrix} = (-1)(-4) - (-3)(0) = 4\) 3. \(\begin{vmatrix} -1 & -1 \\ 0 & -5 \end{vmatrix} = (-1)(-5) - (-1)(0) = 5\) Now substituting back into the determinant formula: \[ \text{det}(B) = 1 \cdot (-11) - 3 \cdot 4 + (-4) \cdot 5 = -11 - 12 - 20 = -43 \] ### Step 4: Find the Cofactor Matrix of \(B\) Next, we will find the cofactor matrix of \(B\). The cofactor \(C_{ij}\) is given by: \[ C_{ij} = (-1)^{i+j} \cdot \text{det}(M_{ij}) \] where \(M_{ij}\) is the minor matrix obtained by deleting the \(i\)-th row and \(j\)-th column. Calculating the cofactors: 1. \(C_{11} = \begin{vmatrix} -1 & -3 \\ -5 & -4 \end{vmatrix} = -11\) 2. \(C_{12} = -\begin{vmatrix} -1 & -3 \\ 0 & -4 \end{vmatrix} = -4\) 3. \(C_{13} = \begin{vmatrix} -1 & -1 \\ 0 & -5 \end{vmatrix} = 5\) 4. \(C_{21} = -\begin{vmatrix} 3 & -4 \\ -5 & -4 \end{vmatrix} = -(-12 + 20) = 8\) 5. \(C_{22} = \begin{vmatrix} 1 & -4 \\ 0 & -4 \end{vmatrix} = -4\) 6. \(C_{23} = -\begin{vmatrix} 1 & 3 \\ 0 & -5 \end{vmatrix} = 5\) 7. \(C_{31} = \begin{vmatrix} 3 & -4 \\ -1 & -3 \end{vmatrix} = -9 + 4 = -5\) 8. \(C_{32} = -\begin{vmatrix} 1 & -4 \\ -1 & -3 \end{vmatrix} = 1\) 9. \(C_{33} = \begin{vmatrix} 1 & 3 \\ -1 & -1 \end{vmatrix} = -1 - (-3) = 2\) Thus, the cofactor matrix \(C\) is: \[ C = \begin{pmatrix} -11 & -4 & 5 \\ 8 & -4 & 5 \\ -5 & 1 & 2 \end{pmatrix} \] ### Step 5: Find the Adjoint of \(B\) The adjoint of \(B\) is the transpose of the cofactor matrix: \[ \text{adj}(B) = C^T = \begin{pmatrix} -11 & 8 & -5 \\ -4 & -4 & 1 \\ 5 & 5 & 2 \end{pmatrix} \] ### Step 6: Calculate the Inverse of \(B\) The inverse of \(B\) is given by: \[ B^{-1} = \frac{1}{\text{det}(B)} \cdot \text{adj}(B) \] Substituting the determinant and adjoint: \[ B^{-1} = \frac{1}{-43} \cdot \begin{pmatrix} -11 & 8 & -5 \\ -4 & -4 & 1 \\ 5 & 5 & 2 \end{pmatrix} \] Thus, the final result for \((I - A)^{-1}\) is: \[ (I - A)^{-1} = \begin{pmatrix} \frac{11}{43} & -\frac{8}{43} & \frac{5}{43} \\ \frac{4}{43} & \frac{4}{43} & -\frac{1}{43} \\ -\frac{5}{43} & -\frac{5}{43} & -\frac{2}{43} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .