Home
Class 12
MATHS
If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|"...

If `A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \((AB)^{-1}\), we can use the property of inverses of matrices, which states that \((AB)^{-1} = B^{-1}A^{-1}\). Given that \(A^{-1}\) and \(B\) are provided, we will first find \(B^{-1}\) and then compute \((AB)^{-1}\). ### Step 1: Write down the given matrices We have: \[ A^{-1} = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \] \[ B = \begin{pmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \(B\) To find \(B^{-1}\), we first need to calculate the determinant of \(B\): \[ \text{det}(B) = 5 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} - 0 + 4 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3)(1) - (2)(2) = 3 - 4 = -1 \] \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2)(2) - (3)(1) = 4 - 3 = 1 \] Now substituting back: \[ \text{det}(B) = 5(-1) + 0 + 4(1) = -5 + 4 = -1 \] ### Step 3: Find the adjoint of matrix \(B\) To find \(B^{-1}\), we also need the adjoint of \(B\). The adjoint is obtained by finding the cofactor matrix and then transposing it. The cofactor matrix \(C\) is calculated as follows: - For \(C_{11}\): \(\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = -1\) - For \(C_{12}\): \(-\begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} = 0\) - For \(C_{13}\): \(\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 1\) Continuing this process for all elements gives us the cofactor matrix: \[ C = \begin{pmatrix} -1 & 0 & 1 \\ -2 & -1 & 2 \\ 6 & -5 & 5 \end{pmatrix} \] Now, we take the transpose to get the adjoint: \[ \text{adj}(B) = C^T = \begin{pmatrix} -1 & -2 & 6 \\ 0 & -1 & -5 \\ 1 & 2 & 5 \end{pmatrix} \] ### Step 4: Calculate \(B^{-1}\) Now we can find \(B^{-1}\): \[ B^{-1} = \frac{1}{\text{det}(B)} \cdot \text{adj}(B) = -1 \cdot \begin{pmatrix} -1 & -2 & 6 \\ 0 & -1 & -5 \\ 1 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -6 \\ 0 & 1 & 5 \\ -1 & -2 & -5 \end{pmatrix} \] ### Step 5: Calculate \((AB)^{-1}\) Now we can find \((AB)^{-1} = B^{-1}A^{-1}\): \[ B^{-1} = \begin{pmatrix} 1 & 2 & -6 \\ 0 & 1 & 5 \\ -1 & -2 & -5 \end{pmatrix} \] \[ A^{-1} = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \] Now we multiply \(B^{-1}\) and \(A^{-1}\): \[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 1 & 2 & -6 \\ 0 & 1 & 5 \\ -1 & -2 & -5 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \] Calculating the product: 1. First row: - \(1*1 + 2*1 + (-6)*1 = 1 + 2 - 6 = -3\) - \(1*3 + 2*4 + (-6)*3 = 3 + 8 - 18 = -7\) - \(1*3 + 2*3 + (-6)*4 = 3 + 6 - 24 = -15\) 2. Second row: - \(0*1 + 1*1 + 5*1 = 0 + 1 + 5 = 6\) - \(0*3 + 1*4 + 5*3 = 0 + 4 + 15 = 19\) - \(0*3 + 1*3 + 5*4 = 0 + 3 + 20 = 23\) 3. Third row: - \(-1*1 + (-2)*1 + (-5)*1 = -1 - 2 - 5 = -8\) - \(-1*3 + (-2)*4 + (-5)*3 = -3 - 8 - 15 = -26\) - \(-1*3 + (-2)*3 + (-5)*4 = -3 - 6 - 20 = -29\) Thus, we have: \[ (AB)^{-1} = \begin{pmatrix} -3 & -7 & -15 \\ 6 & 19 & 23 \\ -8 & -26 & -29 \end{pmatrix} \] ### Final Answer \[ (AB)^{-1} = \begin{pmatrix} -3 & -7 & -15 \\ 6 & 19 & 23 \\ -8 & -26 & -29 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if A=[{:(4,2),(-3,2),(1,3):}]and B=[{:(-1,3),(0,2),(2,-4):}], then find 3A-4B.

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}] and C=[{:(1,2,3),(3,2,1),(8,7,9):}], then find AB-AC.

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]