Home
Class 12
MATHS
Solve the equations by matrix method: ...

Solve the equations by matrix method: x+y+z=6 x+y-z=0 2x+y+2z=10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations using the matrix method, we will follow these steps: ### Step 1: Write the equations in standard form The equations given are: 1. \( x + y + z = 6 \) 2. \( x + y - z = 0 \) 3. \( 2x + y + 2z = 10 \) ### Step 2: Form the coefficient matrix \( A \), variable matrix \( X \), and constant matrix \( B \) From the equations, we can identify: - Coefficient matrix \( A \): \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix} \] - Variable matrix \( X \): \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] - Constant matrix \( B \): \[ B = \begin{bmatrix} 6 \\ 0 \\ 10 \end{bmatrix} \] ### Step 3: Set up the matrix equation \( AX = B \) The matrix equation can be written as: \[ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 10 \end{bmatrix} \] ### Step 4: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \): \[ |A| = 1 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(-1) = 2 + 1 = 3 \) 2. \( \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} = (1)(2) - (2)(-1) = 2 + 2 = 4 \) 3. \( \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (1)(2) = 1 - 2 = -1 \) Now substituting back into the determinant formula: \[ |A| = 1 \cdot 3 - 1 \cdot 4 + 1 \cdot (-1) = 3 - 4 - 1 = -2 \] ### Step 5: Find the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) \] Since \( |A| = -2 \), we need to find the adjugate of \( A \). ### Step 6: Calculate the adjugate of \( A \) The adjugate matrix is formed by the cofactors of \( A \): 1. Calculate cofactors for each element of \( A \): - \( C_{11} = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3 \) - \( C_{12} = -\begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} = -4 \) - \( C_{13} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1 \) - \( C_{21} = -\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = -1 \) - \( C_{22} = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 0 \) - \( C_{23} = -\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1 \) - \( C_{31} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \) - \( C_{32} = -\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2 \) - \( C_{33} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0 \) The cofactor matrix is: \[ \text{Cof}(A) = \begin{bmatrix} 3 & -4 & -1 \\ -1 & 0 & 1 \\ -2 & 2 & 0 \end{bmatrix} \] Taking the transpose gives us the adjugate: \[ \text{adj}(A) = \begin{bmatrix} 3 & -1 & -2 \\ -4 & 0 & 2 \\ -1 & 1 & 0 \end{bmatrix} \] ### Step 7: Calculate \( A^{-1} \) Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{-2} \begin{bmatrix} 3 & -1 & -2 \\ -4 & 0 & 2 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1.5 & 0.5 & 1 \\ 2 & 0 & -1 \\ 0.5 & -0.5 & 0 \end{bmatrix} \] ### Step 8: Multiply \( A^{-1} \) with \( B \) to find \( X \) Now we can find \( X \): \[ X = A^{-1}B = \begin{bmatrix} -1.5 & 0.5 & 1 \\ 2 & 0 & -1 \\ 0.5 & -0.5 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 10 \end{bmatrix} \] Calculating the multiplication: 1. First row: \( -1.5 \cdot 6 + 0.5 \cdot 0 + 1 \cdot 10 = -9 + 0 + 10 = 1 \) 2. Second row: \( 2 \cdot 6 + 0 \cdot 0 - 1 \cdot 10 = 12 + 0 - 10 = 2 \) 3. Third row: \( 0.5 \cdot 6 - 0.5 \cdot 0 + 0 \cdot 10 = 3 - 0 + 0 = 3 \) Thus, we have: \[ X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = 1, \quad y = 2, \quad z = 3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4d|13 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Solve the equations by matrix method : (i) x+2y+z=7 x+2y+z=7 x+3z=11

Solve the following equations by matrix method. 2x + y + z = 1, x - 2y - 3z=1 and 3x + 2y +4z=5

Solve the following system of homogeneous linear equations by matrix method: x+y+z=0,\ \ x-y-5z=0,\ \ x+2y+4z=0

Solve the following system of homogeneous linear equations by matrix method: x+y-6z=0,\ \ x-y+2z=0,\ \ -3x+y+2z=0

Solve the following system of equations by matrix method: x-y+z=2,\ \ 2x-y=0, \ \ 2y-z=1

Solve the following system of homogeneous linear equations by matrix method: 2x-y+z=0,\ \ 3x+2y-z=0,\ \ x+4y+3z=0

Solve the following system of homogeneous linear equations by matrix method: 3x+y-2z=0,\ \ x+y+z=0,\ \ x-2y+z=0

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Solve the following system of homogeneous linear equations by matrix method: 2x-y+2z=0,\ \ 5x+3y-z=0,\ \ x+5y-5z=0

Solve the following system of equations by matrix method: 2x+y+z=2,\ \ x+3y-z=5,\ \ 3x+y-2z=6