Home
Class 12
MATHS
The value of the determinant |{:(1,,...

The value of the determinant `|{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+2)C_(1)),(.^(m)C_(2),,.^(m+1)C_(1),,.^(m+2)C_(2)):}|` is equal to

A

0

B

-1

C

-2

D

-3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

If m in N and mgeq2 prove that: |1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1 .

The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1