Home
Class 12
MATHS
If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q...

If `|{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=`

A

`2`

B

`1`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinants and find the value of \( m \) such that: \[ |{:(a-b, b-c, c-a), (x-y, y-z, z-x), (p-q, q-r, r-p):}| = m |{:(c, a, b), (z, x, y), (r, p, q):}| \] ### Step-by-Step Solution: 1. **Define the Determinants:** Let \( D_1 = |{:(a-b, b-c, c-a), (x-y, y-z, z-x), (p-q, q-r, r-p):}| \) and \( D_2 = |{:(c, a, b), (z, x, y), (r, p, q):}| \). 2. **Evaluate \( D_1 \):** We will simplify \( D_1 \) using properties of determinants. We can perform column operations to simplify the determinant. - Add the second and third columns to the first column: \[ C_1 \to C_1 + C_2 + C_3 \] - This results in: \[ D_1 = |{:(a-b + (b-c) + (c-a), b-c, c-a), (x-y + (y-z) + (z-x), y-z, z-x), (p-q + (q-r) + (r-p), q-r, r-p):}| \] - The first column simplifies to: \[ 0, 0, 0 \] - Therefore, we have: \[ D_1 = |{:(0, b-c, c-a), (0, y-z, z-x), (0, q-r, r-p):}| \] 3. **Expand \( D_1 \):** Since the first column consists entirely of zeros, the determinant \( D_1 \) evaluates to: \[ D_1 = 0 \] 4. **Evaluate \( D_2 \):** The determinant \( D_2 \) is a standard determinant and does not need simplification for this problem since we only need to compare it with \( D_1 \). 5. **Set Up the Equation:** From the initial equation, we have: \[ D_1 = m \cdot D_2 \] Substituting the values we found: \[ 0 = m \cdot D_2 \] 6. **Solve for \( m \):** Since \( D_2 \) is not zero (assuming \( c, a, b, z, x, y, r, p, q \) are distinct), the only solution for \( m \) that satisfies the equation is: \[ m = 0 \] ### Conclusion: Thus, the value of \( m \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

If |{:(a,b,c),(m,n,p),(x,y,z):}|=k then thet value of |{:(6a,2b,2c),(3m,n,p),(3x,y,z):}|

If A=[(a,b,c),(x,y,z),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If A is invertible, then which of the following is not true ?

If A=[(a, b, c), (x, y, z), (p, q, r)], B=[(q,-b, y),(-p, a,-x),(r,-c, z)] and if A is invertible, then which of the following is not true? (a) |A|=|B| (b) |A|=-|B| (c) |adj A|=|adj B| (d) A is invertible if and only if B is invertible

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

If A=|[a, b, c],[ x, y, z],[ p, q, r]| and B=|[q, -b, y],[ -p, a, -x],[ r,-c, z]| , without expanding or evaluating A and B , show that A+B=0 .

Prove that the value of each the following determinants is zero: |[a-b,b-c,c-a],[ x-y, y-z, z-x],[ p-q, q-r ,r-p]|

If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)] , prove that P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P